1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
#' Cartesian coordinates
#'
#' The Cartesian coordinate system is the most familiar, and common, type of
#' coordinate system. Setting limits on the coordinate system will zoom the
#' plot (like you're looking at it with a magnifying glass), and will not
#' change the underlying data like setting limits on a scale will.
#'
#' @param xlim,ylim Limits for the x and y axes.
#' @param expand If `TRUE`, the default, adds a small expansion factor to
#' the limits to ensure that data and axes don't overlap. If `FALSE`,
#' limits are taken exactly from the data or `xlim`/`ylim`.
#' @param default Is this the default coordinate system? If `FALSE` (the default),
#' then replacing this coordinate system with another one creates a message alerting
#' the user that the coordinate system is being replaced. If `TRUE`, that warning
#' is suppressed.
#' @param clip Should drawing be clipped to the extent of the plot panel? A
#' setting of `"on"` (the default) means yes, and a setting of `"off"`
#' means no. In most cases, the default of `"on"` should not be changed,
#' as setting `clip = "off"` can cause unexpected results. It allows
#' drawing of data points anywhere on the plot, including in the plot margins. If
#' limits are set via `xlim` and `ylim` and some data points fall outside those
#' limits, then those data points may show up in places such as the axes, the
#' legend, the plot title, or the plot margins.
#' @export
#' @examples
#' # There are two ways of zooming the plot display: with scales or
#' # with coordinate systems. They work in two rather different ways.
#'
#' p <- ggplot(mtcars, aes(disp, wt)) +
#' geom_point() +
#' geom_smooth()
#' p
#'
#' # Setting the limits on a scale converts all values outside the range to NA.
#' p + scale_x_continuous(limits = c(325, 500))
#'
#' # Setting the limits on the coordinate system performs a visual zoom.
#' # The data is unchanged, and we just view a small portion of the original
#' # plot. Note how smooth continues past the points visible on this plot.
#' p + coord_cartesian(xlim = c(325, 500))
#'
#' # By default, the same expansion factor is applied as when setting scale
#' # limits. You can set the limits precisely by setting expand = FALSE
#' p + coord_cartesian(xlim = c(325, 500), expand = FALSE)
#'
#' # Simiarly, we can use expand = FALSE to turn off expansion with the
#' # default limits
#' p + coord_cartesian(expand = FALSE)
#'
#' # You can see the same thing with this 2d histogram
#' d <- ggplot(diamonds, aes(carat, price)) +
#' stat_bin2d(bins = 25, colour = "white")
#' d
#'
#' # When zooming the scale, the we get 25 new bins that are the same
#' # size on the plot, but represent smaller regions of the data space
#' d + scale_x_continuous(limits = c(0, 1))
#'
#' # When zooming the coordinate system, we see a subset of original 50 bins,
#' # displayed bigger
#' d + coord_cartesian(xlim = c(0, 1))
coord_cartesian <- function(xlim = NULL, ylim = NULL, expand = TRUE,
default = FALSE, clip = "on") {
ggproto(NULL, CoordCartesian,
limits = list(x = xlim, y = ylim),
expand = expand,
default = default,
clip = clip
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
CoordCartesian <- ggproto("CoordCartesian", Coord,
is_linear = function() TRUE,
is_free = function() TRUE,
distance = function(x, y, panel_params) {
max_dist <- dist_euclidean(panel_params$x$dimension(), panel_params$y$dimension())
dist_euclidean(x, y) / max_dist
},
range = function(panel_params) {
list(x = panel_params$x$dimension(), y = panel_params$y$dimension())
},
backtransform_range = function(self, panel_params) {
self$range(panel_params)
},
transform = function(data, panel_params) {
data <- transform_position(data, panel_params$x$rescale, panel_params$y$rescale)
transform_position(data, squish_infinite, squish_infinite)
},
setup_panel_params = function(self, scale_x, scale_y, params = list()) {
c(
view_scales_from_scale(scale_x, self$limits$x, self$expand),
view_scales_from_scale(scale_y, self$limits$y, self$expand)
)
},
render_bg = function(panel_params, theme) {
guide_grid(
theme,
panel_params$x$break_positions_minor(),
panel_params$x$break_positions(),
panel_params$y$break_positions_minor(),
panel_params$y$break_positions()
)
},
render_axis_h = function(panel_params, theme) {
list(
top = panel_guides_grob(panel_params$guides, position = "top", theme = theme),
bottom = panel_guides_grob(panel_params$guides, position = "bottom", theme = theme)
)
},
render_axis_v = function(panel_params, theme) {
list(
left = panel_guides_grob(panel_params$guides, position = "left", theme = theme),
right = panel_guides_grob(panel_params$guides, position = "right", theme = theme)
)
}
)
view_scales_from_scale <- function(scale, coord_limits = NULL, expand = TRUE) {
expansion <- default_expansion(scale, expand = expand)
limits <- scale$get_limits()
continuous_range <- expand_limits_scale(scale, expansion, limits, coord_limits = coord_limits)
aesthetic <- scale$aesthetics[1]
view_scales <- list(
view_scale_primary(scale, limits, continuous_range),
sec = view_scale_secondary(scale, limits, continuous_range),
range = continuous_range
)
names(view_scales) <- c(aesthetic, paste0(aesthetic, ".", names(view_scales)[-1]))
view_scales
}
panel_guide_label <- function(guides, position, default_label) {
guide <- guide_for_position(guides, position) %||% guide_none(title = waiver())
guide$title %|W|% default_label
}
panel_guides_grob <- function(guides, position, theme) {
guide <- guide_for_position(guides, position) %||% guide_none()
guide_gengrob(guide, theme)
}
guide_for_position <- function(guides, position) {
has_position <- vapply(
guides,
function(guide) identical(guide$position, position),
logical(1)
)
guides <- guides[has_position]
guides_order <- vapply(guides, function(guide) as.numeric(guide$order)[1], numeric(1))
Reduce(guide_merge, guides[order(guides_order)])
}
|