1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
#' Prices of over 50,000 round cut diamonds
#'
#' A dataset containing the prices and other attributes of almost 54,000
#' diamonds. The variables are as follows:
#'
#' @format A data frame with 53940 rows and 10 variables:
#' \describe{
#' \item{price}{price in US dollars ($326--$18,823)}
#' \item{carat}{weight of the diamond (0.2--5.01)}
#' \item{cut}{quality of the cut (Fair, Good, Very Good, Premium, Ideal)}
#' \item{color}{diamond colour, from D (best) to J (worst)}
#' \item{clarity}{a measurement of how clear the diamond is (I1 (worst), SI2,
#' SI1, VS2, VS1, VVS2, VVS1, IF (best))}
#' \item{x}{length in mm (0--10.74)}
#' \item{y}{width in mm (0--58.9)}
#' \item{z}{depth in mm (0--31.8)}
#' \item{depth}{total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43--79)}
#' \item{table}{width of top of diamond relative to widest point (43--95)}
#' }
"diamonds"
#' US economic time series
#'
#' This dataset was produced from US economic time series data available from
#' \url{https://fred.stlouisfed.org/}. `economics` is in "wide"
#' format, `economics_long` is in "long" format.
#'
#' @format A data frame with 574 rows and 6 variables:
#' \describe{
#' \item{date}{Month of data collection}
#' \item{pce}{personal consumption expenditures, in billions of dollars,
#' \url{https://fred.stlouisfed.org/series/PCE}}
#' \item{pop}{total population, in thousands,
#' \url{https://fred.stlouisfed.org/series/POP}}
#' \item{psavert}{personal savings rate,
#' \url{https://fred.stlouisfed.org/series/PSAVERT/}}
#' \item{uempmed}{median duration of unemployment, in weeks,
#' \url{https://fred.stlouisfed.org/series/UEMPMED}}
#' \item{unemploy}{number of unemployed in thousands,
#' \url{https://fred.stlouisfed.org/series/UNEMPLOY}}
#' }
#'
"economics"
#' @rdname economics
"economics_long"
#' Midwest demographics
#'
#' Demographic information of midwest counties from 2000 US census
#'
#' Note: this dataset is included for illustrative purposes. The original
#' descriptions were not documented and the current descriptions here are based
#' on speculation. For more accurate and up-to-date US census data, see the
#' [`acs` package](https://cran.r-project.org/package=acs).
#'
#' @format A data frame with 437 rows and 28 variables:
#' \describe{
#' \item{PID}{Unique county identifier.}
#' \item{county}{County name.}
#' \item{state}{State to which county belongs to.}
#' \item{area}{Area of county (units unknown).}
#' \item{poptotal}{Total population.}
#' \item{popdensity}{Population density (person/unit area).}
#' \item{popwhite}{Number of whites.}
#' \item{popblack}{Number of blacks.}
#' \item{popamerindian}{Number of American Indians.}
#' \item{popasian}{Number of Asians.}
#' \item{popother}{Number of other races.}
#' \item{percwhite}{Percent white.}
#' \item{percblack}{Percent black.}
#' \item{percamerindan}{Percent American Indian.}
#' \item{percasian}{Percent Asian.}
#' \item{percother}{Percent other races.}
#' \item{popadults}{Number of adults.}
#' \item{perchsd}{Percent with high school diploma.}
#' \item{percollege}{Percent college educated.}
#' \item{percprof}{Percent with professional degree.}
#' \item{poppovertyknown}{Population with known poverty status.}
#' \item{percpovertyknown}{Percent of population with known poverty status.}
#' \item{percbelowpoverty}{Percent of people below poverty line.}
#' \item{percchildbelowpovert}{Percent of children below poverty line.}
#' \item{percadultpoverty}{Percent of adults below poverty line.}
#' \item{percelderlypoverty}{Percent of elderly below poverty line.}
#' \item{inmetro}{County considered in a metro area.}
#' \item{category}{Miscellaneous.}
#' }
#'
"midwest"
#' Fuel economy data from 1999 to 2008 for 38 popular models of cars
#'
#' This dataset contains a subset of the fuel economy data that the EPA makes
#' available on \url{https://fueleconomy.gov/}. It contains only models which
#' had a new release every year between 1999 and 2008 - this was used as a
#' proxy for the popularity of the car.
#'
#' @format A data frame with 234 rows and 11 variables:
#' \describe{
#' \item{manufacturer}{manufacturer name}
#' \item{model}{model name}
#' \item{displ}{engine displacement, in litres}
#' \item{year}{year of manufacture}
#' \item{cyl}{number of cylinders}
#' \item{trans}{type of transmission}
#' \item{drv}{the type of drive train, where f = front-wheel drive, r = rear wheel drive, 4 = 4wd}
#' \item{cty}{city miles per gallon}
#' \item{hwy}{highway miles per gallon}
#' \item{fl}{fuel type}
#' \item{class}{"type" of car}
#' }
"mpg"
#' An updated and expanded version of the mammals sleep dataset
#'
#' This is an updated and expanded version of the mammals sleep dataset.
#' Updated sleep times and weights were taken from V. M. Savage and G. B.
#' West. A quantitative, theoretical framework for understanding mammalian
#' sleep. Proceedings of the National Academy of Sciences, 104 (3):1051-1056,
#' 2007.
#'
#' Additional variables order, conservation status and vore were added from
#' wikipedia.
#'
#' @format A data frame with 83 rows and 11 variables:
#' \describe{
#' \item{name}{common name}
#' \item{genus}{}
#' \item{vore}{carnivore, omnivore or herbivore?}
#' \item{order}{}
#' \item{conservation}{the conservation status of the animal}
#' \item{sleep_total}{total amount of sleep, in hours}
#' \item{sleep_rem}{rem sleep, in hours}
#' \item{sleep_cycle}{length of sleep cycle, in hours}
#' \item{awake}{amount of time spent awake, in hours}
#' \item{brainwt}{brain weight in kilograms}
#' \item{bodywt}{body weight in kilograms}
#' }
"msleep"
#' Terms of 12 presidents from Eisenhower to Trump
#'
#' The names of each president, the start and end date of their term, and
#' their party of 12 US presidents from Eisenhower to Trump. This data is
#' in the public domain.
#'
#' @format A data frame with 12 rows and 4 variables:
#' \describe{
#' \item{name}{Last name of president}
#' \item{start}{Presidency start date}
#' \item{end}{Presidency end date}
#' \item{party}{Party of president}
#' }
"presidential"
#' Vector field of seal movements
#'
#' This vector field was produced from the data described in Brillinger, D.R.,
#' Preisler, H.K., Ager, A.A. and Kie, J.G. "An exploratory data analysis
#' (EDA) of the paths of moving animals". J. Statistical Planning and
#' Inference 122 (2004), 43-63, using the methods of Brillinger, D.R.,
#' "Learning a potential function from a trajectory", Signal Processing
#' Letters. December (2007).
#'
#' @format A data frame with 1155 rows and 4 variables
#' @references \url{https://www.stat.berkeley.edu/~brill/Papers/jspifinal.pdf}
"seals"
#' 2d density estimate of Old Faithful data
#'
#' A 2d density estimate of the waiting and eruptions variables data
#' \link{faithful}.
#'
#' @format A data frame with 5,625 observations and 3 variables:
#' \describe{
#' \item{eruptions}{Eruption time in mins}
#' \item{waiting}{Waiting time to next eruption in mins}
#' \item{density}{2d density estimate}
#' }
"faithfuld"
#' `colors()` in Luv space
#'
#' All built-in [colors()] translated into Luv colour space.
#'
#' @format A data frame with 657 observations and 4 variables:
#' \describe{
#' \item{L,u,v}{Position in Luv colour space}
#' \item{col}{Colour name}
#' }
"luv_colours"
#' Housing sales in TX
#'
#' Information about the housing market in Texas provided by the TAMU
#' real estate center, \url{https://www.recenter.tamu.edu/}.
#'
#' @format A data frame with 8602 observations and 9 variables:
#' \describe{
#' \item{city}{Name of multiple listing service (MLS) area}
#' \item{year,month,date}{Date}
#' \item{sales}{Number of sales}
#' \item{volume}{Total value of sales}
#' \item{median}{Median sale price}
#' \item{listings}{Total active listings}
#' \item{inventory}{"Months inventory": amount of time it would take to sell
#' all current listings at current pace of sales.}
#' }
"txhousing"
|