1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
#' Histograms and frequency polygons
#'
#' Visualise the distribution of a single continuous variable by dividing
#' the x axis into bins and counting the number of observations in each bin.
#' Histograms (`geom_histogram()`) display the counts with bars; frequency
#' polygons (`geom_freqpoly()`) display the counts with lines. Frequency
#' polygons are more suitable when you want to compare the distribution
#' across the levels of a categorical variable.
#'
#' `stat_bin()` is suitable only for continuous x data. If your x data is
#' discrete, you probably want to use [stat_count()].
#'
#' By default, the underlying computation (`stat_bin()`) uses 30 bins;
#' this is not a good default, but the idea is to get you experimenting with
#' different number of bins. You can also experiment modifying the `binwidth` with
#' `center` or `boundary` arguments. `binwidth` overrides `bins` so you should do
#' one change at a time. You may need to look at a few options to uncover
#' the full story behind your data.
#'
#' In addition to `geom_histogram()`, you can create a histogram plot by using
#' `scale_x_binned()` with [geom_bar()]. This method by default plots tick marks
#' in between each bar.
#'
#' @eval rd_orientation()
#'
#' @section Aesthetics:
#' `geom_histogram()` uses the same aesthetics as [geom_bar()];
#' `geom_freqpoly()` uses the same aesthetics as [geom_line()].
#'
#' @export
#' @inheritParams layer
#' @inheritParams geom_bar
#' @param geom,stat Use to override the default connection between
#' `geom_histogram()`/`geom_freqpoly()` and `stat_bin()`.
#' @examples
#' ggplot(diamonds, aes(carat)) +
#' geom_histogram()
#' ggplot(diamonds, aes(carat)) +
#' geom_histogram(binwidth = 0.01)
#' ggplot(diamonds, aes(carat)) +
#' geom_histogram(bins = 200)
#' # Map values to y to flip the orientation
#' ggplot(diamonds, aes(y = carat)) +
#' geom_histogram()
#'
#' # For histograms with tick marks between each bin, use `geom_bar()` with
#' # `scale_x_binned()`.
#' ggplot(diamonds, aes(carat)) +
#' geom_bar() +
#' scale_x_binned()
#'
#' # Rather than stacking histograms, it's easier to compare frequency
#' # polygons
#' ggplot(diamonds, aes(price, fill = cut)) +
#' geom_histogram(binwidth = 500)
#' ggplot(diamonds, aes(price, colour = cut)) +
#' geom_freqpoly(binwidth = 500)
#'
#' # To make it easier to compare distributions with very different counts,
#' # put density on the y axis instead of the default count
#' ggplot(diamonds, aes(price, after_stat(density), colour = cut)) +
#' geom_freqpoly(binwidth = 500)
#'
#' if (require("ggplot2movies")) {
#' # Often we don't want the height of the bar to represent the
#' # count of observations, but the sum of some other variable.
#' # For example, the following plot shows the number of movies
#' # in each rating.
#' m <- ggplot(movies, aes(rating))
#' m + geom_histogram(binwidth = 0.1)
#'
#' # If, however, we want to see the number of votes cast in each
#' # category, we need to weight by the votes variable
#' m +
#' geom_histogram(aes(weight = votes), binwidth = 0.1) +
#' ylab("votes")
#'
#' # For transformed scales, binwidth applies to the transformed data.
#' # The bins have constant width on the transformed scale.
#' m +
#' geom_histogram() +
#' scale_x_log10()
#' m +
#' geom_histogram(binwidth = 0.05) +
#' scale_x_log10()
#'
#' # For transformed coordinate systems, the binwidth applies to the
#' # raw data. The bins have constant width on the original scale.
#'
#' # Using log scales does not work here, because the first
#' # bar is anchored at zero, and so when transformed becomes negative
#' # infinity. This is not a problem when transforming the scales, because
#' # no observations have 0 ratings.
#' m +
#' geom_histogram(boundary = 0) +
#' coord_trans(x = "log10")
#' # Use boundary = 0, to make sure we don't take sqrt of negative values
#' m +
#' geom_histogram(boundary = 0) +
#' coord_trans(x = "sqrt")
#'
#' # You can also transform the y axis. Remember that the base of the bars
#' # has value 0, so log transformations are not appropriate
#' m <- ggplot(movies, aes(x = rating))
#' m +
#' geom_histogram(binwidth = 0.5) +
#' scale_y_sqrt()
#' }
#'
#' # You can specify a function for calculating binwidth, which is
#' # particularly useful when faceting along variables with
#' # different ranges because the function will be called once per facet
#' ggplot(economics_long, aes(value)) +
#' facet_wrap(~variable, scales = 'free_x') +
#' geom_histogram(binwidth = function(x) 2 * IQR(x) / (length(x)^(1/3)))
geom_histogram <- function(mapping = NULL, data = NULL,
stat = "bin", position = "stack",
...,
binwidth = NULL,
bins = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomBar,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list2(
binwidth = binwidth,
bins = bins,
na.rm = na.rm,
orientation = orientation,
pad = FALSE,
...
)
)
}
|