1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
#' Jitter points to avoid overplotting
#'
#' Counterintuitively adding random noise to a plot can sometimes make it
#' easier to read. Jittering is particularly useful for small datasets with
#' at least one discrete position.
#'
#' @family position adjustments
#' @param width,height Amount of vertical and horizontal jitter. The jitter
#' is added in both positive and negative directions, so the total spread
#' is twice the value specified here.
#'
#' If omitted, defaults to 40% of the resolution of the data: this means the
#' jitter values will occupy 80% of the implied bins. Categorical data
#' is aligned on the integers, so a width or height of 0.5 will spread the
#' data so it's not possible to see the distinction between the categories.
#' @param seed A random seed to make the jitter reproducible.
#' Useful if you need to apply the same jitter twice, e.g., for a point and
#' a corresponding label.
#' The random seed is reset after jittering.
#' If `NA` (the default value), the seed is initialised with a random value;
#' this makes sure that two subsequent calls start with a different seed.
#' Use `NULL` to use the current random seed and also avoid resetting
#' (the behaviour of \pkg{ggplot} 2.2.1 and earlier).
#' @export
#' @examples
#' # Jittering is useful when you have a discrete position, and a relatively
#' # small number of points
#' # take up as much space as a boxplot or a bar
#' ggplot(mpg, aes(class, hwy)) +
#' geom_boxplot(colour = "grey50") +
#' geom_jitter()
#'
#' # If the default jittering is too much, as in this plot:
#' ggplot(mtcars, aes(am, vs)) +
#' geom_jitter()
#'
#' # You can adjust it in two ways
#' ggplot(mtcars, aes(am, vs)) +
#' geom_jitter(width = 0.1, height = 0.1)
#' ggplot(mtcars, aes(am, vs)) +
#' geom_jitter(position = position_jitter(width = 0.1, height = 0.1))
#'
#' # Create a jitter object for reproducible jitter:
#' jitter <- position_jitter(width = 0.1, height = 0.1)
#' ggplot(mtcars, aes(am, vs)) +
#' geom_point(position = jitter) +
#' geom_point(position = jitter, color = "red", aes(am + 0.2, vs + 0.2))
position_jitter <- function(width = NULL, height = NULL, seed = NA) {
ggproto(NULL, PositionJitter,
width = width,
height = height,
seed = seed
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
PositionJitter <- ggproto("PositionJitter", Position,
seed = NA,
required_aes = c("x", "y"),
setup_params = function(self, data) {
if (!is.null(self$seed) && is.na(self$seed)) {
seed <- sample.int(.Machine$integer.max, 1L)
} else {
seed <- self$seed
}
list(
width = self$width %||% (resolution(data$x, zero = FALSE) * 0.4),
height = self$height %||% (resolution(data$y, zero = FALSE) * 0.4),
seed = seed
)
},
compute_layer = function(self, data, params, layout) {
trans_x <- if (params$width > 0) function(x) jitter(x, amount = params$width)
trans_y <- if (params$height > 0) function(x) jitter(x, amount = params$height)
# Make sure x and y jitter is only calculated once for all position aesthetics
x_aes <- intersect(ggplot_global$x_aes, names(data))
x <- if (length(x_aes) == 0) 0 else data[[x_aes[1]]]
y_aes <- intersect(ggplot_global$y_aes, names(data))
y <- if (length(y_aes) == 0) 0 else data[[y_aes[1]]]
dummy_data <- data_frame0(x = x, y = y, .size = nrow(data))
fixed_jitter <- with_seed_null(params$seed, transform_position(dummy_data, trans_x, trans_y))
x_jit <- fixed_jitter$x - x
y_jit <- fixed_jitter$y - y
# Avoid nan values, if x or y has Inf values
x_jit[is.infinite(x)] <- 0
y_jit[is.infinite(y)] <- 0
# Apply jitter
transform_position(data, function(x) x + x_jit, function(x) x + y_jit)
}
)
|