1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/geom-boxplot.r, R/stat-boxplot.r
\name{geom_boxplot}
\alias{geom_boxplot}
\alias{stat_boxplot}
\title{A box and whiskers plot (in the style of Tukey)}
\usage{
geom_boxplot(
mapping = NULL,
data = NULL,
stat = "boxplot",
position = "dodge2",
...,
outlier.colour = NULL,
outlier.color = NULL,
outlier.fill = NULL,
outlier.shape = 19,
outlier.size = 1.5,
outlier.stroke = 0.5,
outlier.alpha = NULL,
notch = FALSE,
notchwidth = 0.5,
varwidth = FALSE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
stat_boxplot(
mapping = NULL,
data = NULL,
geom = "boxplot",
position = "dodge2",
...,
coef = 1.5,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
}
\arguments{
\item{mapping}{Set of aesthetic mappings created by \code{\link[=aes]{aes()}}. If specified and
\code{inherit.aes = TRUE} (the default), it is combined with the default mapping
at the top level of the plot. You must supply \code{mapping} if there is no plot
mapping.}
\item{data}{The data to be displayed in this layer. There are three
options:
If \code{NULL}, the default, the data is inherited from the plot
data as specified in the call to \code{\link[=ggplot]{ggplot()}}.
A \code{data.frame}, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
\code{\link[=fortify]{fortify()}} for which variables will be created.
A \code{function} will be called with a single argument,
the plot data. The return value must be a \code{data.frame}, and
will be used as the layer data. A \code{function} can be created
from a \code{formula} (e.g. \code{~ head(.x, 10)}).}
\item{position}{Position adjustment, either as a string naming the adjustment
(e.g. \code{"jitter"} to use \code{position_jitter}), or the result of a call to a
position adjustment function. Use the latter if you need to change the
settings of the adjustment.}
\item{...}{Other arguments passed on to \code{\link[=layer]{layer()}}. These are
often aesthetics, used to set an aesthetic to a fixed value, like
\code{colour = "red"} or \code{size = 3}. They may also be parameters
to the paired geom/stat.}
\item{outlier.colour, outlier.color, outlier.fill, outlier.shape, outlier.size, outlier.stroke, outlier.alpha}{Default aesthetics for outliers. Set to \code{NULL} to inherit from the
aesthetics used for the box.
In the unlikely event you specify both US and UK spellings of colour, the
US spelling will take precedence.
Sometimes it can be useful to hide the outliers, for example when overlaying
the raw data points on top of the boxplot. Hiding the outliers can be achieved
by setting \code{outlier.shape = NA}. Importantly, this does not remove the outliers,
it only hides them, so the range calculated for the y-axis will be the
same with outliers shown and outliers hidden.}
\item{notch}{If \code{FALSE} (default) make a standard box plot. If
\code{TRUE}, make a notched box plot. Notches are used to compare groups;
if the notches of two boxes do not overlap, this suggests that the medians
are significantly different.}
\item{notchwidth}{For a notched box plot, width of the notch relative to
the body (defaults to \code{notchwidth = 0.5}).}
\item{varwidth}{If \code{FALSE} (default) make a standard box plot. If
\code{TRUE}, boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups (possibly
weighted, using the \code{weight} aesthetic).}
\item{na.rm}{If \code{FALSE}, the default, missing values are removed with
a warning. If \code{TRUE}, missing values are silently removed.}
\item{orientation}{The orientation of the layer. The default (\code{NA})
automatically determines the orientation from the aesthetic mapping. In the
rare event that this fails it can be given explicitly by setting \code{orientation}
to either \code{"x"} or \code{"y"}. See the \emph{Orientation} section for more detail.}
\item{show.legend}{logical. Should this layer be included in the legends?
\code{NA}, the default, includes if any aesthetics are mapped.
\code{FALSE} never includes, and \code{TRUE} always includes.
It can also be a named logical vector to finely select the aesthetics to
display.}
\item{inherit.aes}{If \code{FALSE}, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. \code{\link[=borders]{borders()}}.}
\item{geom, stat}{Use to override the default connection between
\code{geom_boxplot()} and \code{stat_boxplot()}.}
\item{coef}{Length of the whiskers as multiple of IQR. Defaults to 1.5.}
}
\description{
The boxplot compactly displays the distribution of a continuous variable.
It visualises five summary statistics (the median, two hinges
and two whiskers), and all "outlying" points individually.
}
\section{Orientation}{
This geom treats each axis differently and, thus, can thus have two orientations. Often the orientation is easy to deduce from a combination of the given mappings and the types of positional scales in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation can be specified directly using the \code{orientation} parameter, which can be either \code{"x"} or \code{"y"}. The value gives the axis that the geom should run along, \code{"x"} being the default orientation you would expect for the geom.
}
\section{Summary statistics}{
The lower and upper hinges correspond to the first and third quartiles
(the 25th and 75th percentiles). This differs slightly from the method used
by the \code{\link[=boxplot]{boxplot()}} function, and may be apparent with small samples.
See \code{\link[=boxplot.stats]{boxplot.stats()}} for more information on how hinge
positions are calculated for \code{\link[=boxplot]{boxplot()}}.
The upper whisker extends from the hinge to the largest value no further than
1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance
between the first and third quartiles). The lower whisker extends from the
hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the
end of the whiskers are called "outlying" points and are plotted
individually.
In a notched box plot, the notches extend \code{1.58 * IQR / sqrt(n)}.
This gives a roughly 95\% confidence interval for comparing medians.
See McGill et al. (1978) for more details.
}
\section{Aesthetics}{
\code{geom_boxplot()} understands the following aesthetics (required aesthetics are in bold):
\itemize{
\item \strong{\code{x} \emph{or} \code{y}}
\item \strong{\code{lower} \emph{or} \code{xlower}}
\item \strong{\code{upper} \emph{or} \code{xupper}}
\item \strong{\code{middle} \emph{or} \code{xmiddle}}
\item \strong{\code{ymin} \emph{or} \code{xmin}}
\item \strong{\code{ymax} \emph{or} \code{xmax}}
\item \code{alpha}
\item \code{colour}
\item \code{fill}
\item \code{group}
\item \code{linetype}
\item \code{linewidth}
\item \code{shape}
\item \code{size}
\item \code{weight}
}
Learn more about setting these aesthetics in \code{vignette("ggplot2-specs")}.
}
\section{Computed variables}{
These are calculated by the 'stat' part of layers and can be accessed with \link[=aes_eval]{delayed evaluation}. \code{stat_boxplot()} provides the following variables, some of which depend on the orientation:
\itemize{
\item \code{after_stat(width)}\cr width of boxplot.
\item \code{after_stat(ymin)} \emph{or} \code{after_stat(xmin)}\cr lower whisker = smallest observation greater than or equal to lower hinger - 1.5 * IQR.
\item \code{after_stat(lower)} \emph{or} \code{after_stat(xlower)}\cr lower hinge, 25\% quantile.
\item \code{after_stat(notchlower)}\cr lower edge of notch = median - 1.58 * IQR / sqrt(n).
\item \code{after_stat(middle)} \emph{or} \code{after_stat(xmiddle)}\cr median, 50\% quantile.
\item \code{after_stat(notchupper)}\cr upper edge of notch = median + 1.58 * IQR / sqrt(n).
\item \code{after_stat(upper)} \emph{or} \code{after_stat(xupper)}\cr upper hinge, 75\% quantile.
\item \code{after_stat(ymax)} \emph{or} \code{after_stat(xmax)}\cr upper whisker = largest observation less than or equal to upper hinger + 1.5 * IQR.
}
}
\examples{
p <- ggplot(mpg, aes(class, hwy))
p + geom_boxplot()
# Orientation follows the discrete axis
ggplot(mpg, aes(hwy, class)) + geom_boxplot()
p + geom_boxplot(notch = TRUE)
p + geom_boxplot(varwidth = TRUE)
p + geom_boxplot(fill = "white", colour = "#3366FF")
# By default, outlier points match the colour of the box. Use
# outlier.colour to override
p + geom_boxplot(outlier.colour = "red", outlier.shape = 1)
# Remove outliers when overlaying boxplot with original data points
p + geom_boxplot(outlier.shape = NA) + geom_jitter(width = 0.2)
# Boxplots are automatically dodged when any aesthetic is a factor
p + geom_boxplot(aes(colour = drv))
# You can also use boxplots with continuous x, as long as you supply
# a grouping variable. cut_width is particularly useful
ggplot(diamonds, aes(carat, price)) +
geom_boxplot()
ggplot(diamonds, aes(carat, price)) +
geom_boxplot(aes(group = cut_width(carat, 0.25)))
# Adjust the transparency of outliers using outlier.alpha
ggplot(diamonds, aes(carat, price)) +
geom_boxplot(aes(group = cut_width(carat, 0.25)), outlier.alpha = 0.1)
\donttest{
# It's possible to draw a boxplot with your own computations if you
# use stat = "identity":
set.seed(1)
y <- rnorm(100)
df <- data.frame(
x = 1,
y0 = min(y),
y25 = quantile(y, 0.25),
y50 = median(y),
y75 = quantile(y, 0.75),
y100 = max(y)
)
ggplot(df, aes(x)) +
geom_boxplot(
aes(ymin = y0, lower = y25, middle = y50, upper = y75, ymax = y100),
stat = "identity"
)
}
}
\references{
McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of
box plots. The American Statistician 32, 12-16.
}
\seealso{
\code{\link[=geom_quantile]{geom_quantile()}} for continuous \code{x},
\code{\link[=geom_violin]{geom_violin()}} for a richer display of the distribution, and
\code{\link[=geom_jitter]{geom_jitter()}} for a useful technique for small data.
}
|