1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/geom-density2d.r, R/stat-density-2d.r
\name{geom_density_2d}
\alias{geom_density_2d}
\alias{geom_density2d}
\alias{geom_density_2d_filled}
\alias{geom_density2d_filled}
\alias{stat_density_2d}
\alias{stat_density2d}
\alias{stat_density_2d_filled}
\alias{stat_density2d_filled}
\title{Contours of a 2D density estimate}
\usage{
geom_density_2d(
mapping = NULL,
data = NULL,
stat = "density_2d",
position = "identity",
...,
contour_var = "density",
lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_density_2d_filled(
mapping = NULL,
data = NULL,
stat = "density_2d_filled",
position = "identity",
...,
contour_var = "density",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_density_2d(
mapping = NULL,
data = NULL,
geom = "density_2d",
position = "identity",
...,
contour = TRUE,
contour_var = "density",
n = 100,
h = NULL,
adjust = c(1, 1),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_density_2d_filled(
mapping = NULL,
data = NULL,
geom = "density_2d_filled",
position = "identity",
...,
contour = TRUE,
contour_var = "density",
n = 100,
h = NULL,
adjust = c(1, 1),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
}
\arguments{
\item{mapping}{Set of aesthetic mappings created by \code{\link[=aes]{aes()}}. If specified and
\code{inherit.aes = TRUE} (the default), it is combined with the default mapping
at the top level of the plot. You must supply \code{mapping} if there is no plot
mapping.}
\item{data}{The data to be displayed in this layer. There are three
options:
If \code{NULL}, the default, the data is inherited from the plot
data as specified in the call to \code{\link[=ggplot]{ggplot()}}.
A \code{data.frame}, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
\code{\link[=fortify]{fortify()}} for which variables will be created.
A \code{function} will be called with a single argument,
the plot data. The return value must be a \code{data.frame}, and
will be used as the layer data. A \code{function} can be created
from a \code{formula} (e.g. \code{~ head(.x, 10)}).}
\item{position}{Position adjustment, either as a string naming the adjustment
(e.g. \code{"jitter"} to use \code{position_jitter}), or the result of a call to a
position adjustment function. Use the latter if you need to change the
settings of the adjustment.}
\item{...}{
Arguments passed on to \code{\link[=geom_contour]{geom_contour}}
\describe{
\item{\code{binwidth}}{The width of the contour bins. Overridden by \code{bins}.}
\item{\code{bins}}{Number of contour bins. Overridden by \code{breaks}.}
\item{\code{breaks}}{One of:
\itemize{
\item Numeric vector to set the contour breaks
\item A function that takes the range of the data and binwidth as input
and returns breaks as output. A function can be created from a formula
(e.g. ~ fullseq(.x, .y)).
}
Overrides \code{binwidth} and \code{bins}. By default, this is a vector of length
ten with \code{\link[=pretty]{pretty()}} breaks.}
}}
\item{contour_var}{Character string identifying the variable to contour
by. Can be one of \code{"density"}, \code{"ndensity"}, or \code{"count"}. See the section
on computed variables for details.}
\item{lineend}{Line end style (round, butt, square).}
\item{linejoin}{Line join style (round, mitre, bevel).}
\item{linemitre}{Line mitre limit (number greater than 1).}
\item{na.rm}{If \code{FALSE}, the default, missing values are removed with
a warning. If \code{TRUE}, missing values are silently removed.}
\item{show.legend}{logical. Should this layer be included in the legends?
\code{NA}, the default, includes if any aesthetics are mapped.
\code{FALSE} never includes, and \code{TRUE} always includes.
It can also be a named logical vector to finely select the aesthetics to
display.}
\item{inherit.aes}{If \code{FALSE}, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. \code{\link[=borders]{borders()}}.}
\item{geom, stat}{Use to override the default connection between
\code{geom_density_2d()} and \code{stat_density_2d()}.}
\item{contour}{If \code{TRUE}, contour the results of the 2d density
estimation.}
\item{n}{Number of grid points in each direction.}
\item{h}{Bandwidth (vector of length two). If \code{NULL}, estimated
using \code{\link[MASS:bandwidth.nrd]{MASS::bandwidth.nrd()}}.}
\item{adjust}{A multiplicative bandwidth adjustment to be used if 'h' is
'NULL'. This makes it possible to adjust the bandwidth while still
using the a bandwidth estimator. For example, \code{adjust = 1/2} means
use half of the default bandwidth.}
}
\description{
Perform a 2D kernel density estimation using \code{\link[MASS:kde2d]{MASS::kde2d()}} and
display the results with contours. This can be useful for dealing with
overplotting. This is a 2D version of \code{\link[=geom_density]{geom_density()}}. \code{geom_density_2d()}
draws contour lines, and \code{geom_density_2d_filled()} draws filled contour
bands.
}
\section{Aesthetics}{
\code{geom_density_2d()} understands the following aesthetics (required aesthetics are in bold):
\itemize{
\item \strong{\code{x}}
\item \strong{\code{y}}
\item \code{alpha}
\item \code{colour}
\item \code{group}
\item \code{linetype}
\item \code{linewidth}
}
Learn more about setting these aesthetics in \code{vignette("ggplot2-specs")}.
\code{geom_density_2d_filled()} understands the following aesthetics (required aesthetics are in bold):
\itemize{
\item \strong{\code{x}}
\item \strong{\code{y}}
\item \code{alpha}
\item \code{colour}
\item \code{fill}
\item \code{group}
\item \code{linetype}
\item \code{linewidth}
\item \code{subgroup}
}
Learn more about setting these aesthetics in \code{vignette("ggplot2-specs")}.
}
\section{Computed variables}{
These are calculated by the 'stat' part of layers and can be accessed with \link[=aes_eval]{delayed evaluation}. \code{stat_density_2d()} and \code{stat_density_2d_filled()} compute different variables depending on whether contouring is turned on or off. With contouring off (\code{contour = FALSE}), both stats behave the same, and the following variables are provided:
\itemize{
\item \code{after_stat(density)}\cr The density estimate.
\item \code{after_stat(ndensity)}\cr Density estimate, scaled to a maximum of 1.
\item \code{after_stat(count)}\cr Density estimate * number of observations in group.
\item \code{after_stat(n)}\cr Number of observations in each group.
}
With contouring on (\code{contour = TRUE}), either \code{\link[=stat_contour]{stat_contour()}} or
\code{\link[=stat_contour_filled]{stat_contour_filled()}} (for contour lines or contour bands,
respectively) is run after the density estimate has been obtained,
and the computed variables are determined by these stats.
Contours are calculated for one of the three types of density estimates
obtained before contouring, \code{density}, \code{ndensity}, and \code{count}. Which
of those should be used is determined by the \code{contour_var} parameter.
}
\section{Dropped variables}{
\describe{
\item{\code{z}}{After density estimation, the z values of individual data points are no longer available.}
}
If contouring is enabled, then similarly \code{density}, \code{ndensity}, and \code{count}
are no longer available after the contouring pass.
}
\examples{
m <- ggplot(faithful, aes(x = eruptions, y = waiting)) +
geom_point() +
xlim(0.5, 6) +
ylim(40, 110)
# contour lines
m + geom_density_2d()
\donttest{
# contour bands
m + geom_density_2d_filled(alpha = 0.5)
# contour bands and contour lines
m + geom_density_2d_filled(alpha = 0.5) +
geom_density_2d(linewidth = 0.25, colour = "black")
set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000), ]
d <- ggplot(dsmall, aes(x, y))
# If you map an aesthetic to a categorical variable, you will get a
# set of contours for each value of that variable
d + geom_density_2d(aes(colour = cut))
# If you draw filled contours across multiple facets, the same bins are
# used across all facets
d + geom_density_2d_filled() + facet_wrap(vars(cut))
# If you want to make sure the peak intensity is the same in each facet,
# use `contour_var = "ndensity"`.
d + geom_density_2d_filled(contour_var = "ndensity") + facet_wrap(vars(cut))
# If you want to scale intensity by the number of observations in each group,
# use `contour_var = "count"`.
d + geom_density_2d_filled(contour_var = "count") + facet_wrap(vars(cut))
# If we turn contouring off, we can use other geoms, such as tiles:
d + stat_density_2d(
geom = "raster",
aes(fill = after_stat(density)),
contour = FALSE
) + scale_fill_viridis_c()
# Or points:
d + stat_density_2d(geom = "point", aes(size = after_stat(density)), n = 20, contour = FALSE)
}
}
\seealso{
\code{\link[=geom_contour]{geom_contour()}}, \code{\link[=geom_contour_filled]{geom_contour_filled()}} for information about
how contours are drawn; \code{\link[=geom_bin2d]{geom_bin2d()}} for another way of dealing with
overplotting.
}
|