1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
test_that("building a plot does not affect its scales", {
dat <- data_frame(x = rnorm(20), y = rnorm(20))
p <- ggplot(dat, aes(x, y)) + geom_point()
expect_equal(length(p$scales$scales), 0)
ggplot_build(p)
expect_equal(length(p$scales$scales), 0)
})
test_that("ranges update only for variables listed in aesthetics", {
sc <- scale_alpha()
sc$train_df(data_frame(alpha = 1:10))
expect_equal(sc$range$range, c(1, 10))
sc$train_df(data_frame(alpha = 50))
expect_equal(sc$range$range, c(1, 50))
sc$train_df(data_frame(beta = 100))
expect_equal(sc$range$range, c(1, 50))
sc$train_df(data_frame())
expect_equal(sc$range$range, c(1, 50))
})
test_that("mapping works", {
sc <- scale_alpha(range = c(0, 1), na.value = 0)
sc$train_df(data_frame(alpha = 1:10))
expect_equal(
sc$map_df(data_frame(alpha = 1:10))[[1]],
seq(0, 1, length.out = 10)
)
expect_equal(sc$map_df(data_frame(alpha = NA))[[1]], 0)
expect_equal(
sc$map_df(data_frame(alpha = c(-10, 11)))[[1]],
c(0, 0))
})
test_that("identity scale preserves input values", {
df <- data_frame(x = 1:3, z = factor(letters[1:3]))
# aesthetic-specific scales
p1 <- ggplot(df,
aes(x, z, colour = z, fill = z, shape = z, size = x, alpha = x)) +
geom_point() +
scale_colour_identity() +
scale_fill_identity() +
scale_shape_identity() +
scale_size_identity() +
scale_alpha_identity()
d1 <- layer_data(p1)
expect_equal(d1$colour, as.character(df$z))
expect_equal(d1$fill, as.character(df$z))
expect_equal(d1$shape, as.character(df$z))
expect_equal(d1$size, as.numeric(df$z))
expect_equal(d1$alpha, as.numeric(df$z))
# generic scales
p2 <- ggplot(df,
aes(x, z, colour = z, fill = z, shape = z, size = x, alpha = x)) +
geom_point() +
scale_discrete_identity(aesthetics = c("colour", "fill", "shape")) +
scale_continuous_identity(aesthetics = c("size", "alpha"))
d2 <- layer_data(p2)
expect_equal(d1, d2)
})
test_that("position scales are updated by all position aesthetics", {
df <- data_frame(x = 1:3, y = 1:3)
aesthetics <- list(
aes(xend = x, yend = x),
aes(xmin = x, ymin = x),
aes(xmax = x, ymax = x),
aes(xintercept = x, yintercept = y)
)
base <- ggplot(df, aes(x = 1, y = 1)) + geom_point()
plots <- lapply(aesthetics, function(x) base %+% x)
ranges <- lapply(plots, pranges)
lapply(ranges, function(range) {
expect_equal(range$x[[1]], c(1, 3))
expect_equal(range$y[[1]], c(1, 3))
})
})
test_that("position scales generate after stats", {
df <- data_frame(x = factor(c(1, 1, 1)))
plot <- ggplot(df, aes(x)) + geom_bar()
ranges <- pranges(plot)
expect_equal(ranges$x[[1]], c("1"))
expect_equal(ranges$y[[1]], c(0, 3))
})
test_that("oob affects position values", {
dat <- data_frame(x = c("a", "b", "c"), y = c(1, 5, 10))
base <- ggplot(dat, aes(x, y)) +
geom_col() +
annotate("point", x = "a", y = c(-Inf, Inf))
y_scale <- function(limits, oob = censor) {
scale_y_continuous(limits = limits, oob = oob, expand = c(0, 0))
}
base + scale_y_continuous(limits = c(-0,5))
expect_warning(low_censor <- cdata(base + y_scale(c(0, 5), censor)),
"Removed 1 rows containing missing values")
expect_warning(mid_censor <- cdata(base + y_scale(c(3, 7), censor)),
"Removed 2 rows containing missing values")
low_squish <- cdata(base + y_scale(c(0, 5), squish))
mid_squish <- cdata(base + y_scale(c(3, 7), squish))
# Points are always at the top and bottom
expect_equal(low_censor[[2]]$y, c(0, 1))
expect_equal(mid_censor[[2]]$y, c(0, 1))
expect_equal(low_squish[[2]]$y, c(0, 1))
expect_equal(mid_squish[[2]]$y, c(0, 1))
# Bars depend on limits and oob
expect_equal(low_censor[[1]]$y, c(0.2, 1))
expect_equal(mid_censor[[1]]$y, c(0.5))
expect_equal(low_squish[[1]]$y, c(0.2, 1, 1))
expect_equal(mid_squish[[1]]$y, c(0, 0.5, 1))
})
test_that("all-Inf layers are not used for determining the type of scale", {
d1 <- data_frame(x = c("a", "b"))
p1 <- ggplot(d1, aes(x, x)) +
# Inf is numeric, but means discrete values in this case
annotate("rect", xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf, fill = "black") +
geom_point()
b1 <- ggplot_build(p1)
expect_s3_class(b1$layout$panel_scales_x[[1]], "ScaleDiscretePosition")
p2 <- ggplot() +
# If the layer non-Inf value, it's considered
annotate("rect", xmin = -Inf, xmax = 0, ymin = -Inf, ymax = Inf, fill = "black")
b2 <- ggplot_build(p2)
expect_s3_class(b2$layout$panel_scales_x[[1]], "ScaleContinuousPosition")
})
test_that("scales are looked for in appropriate place", {
xlabel <- function(x) ggplot_build(x)$layout$panel_scales_x[[1]]$name
p0 <- ggplot(mtcars, aes(mpg, wt)) + geom_point() + scale_x_continuous("0")
expect_equal(xlabel(p0), "0")
scale_x_continuous <- function(...) ggplot2::scale_x_continuous("1")
p1 <- ggplot(mtcars, aes(mpg, wt)) + geom_point()
expect_equal(xlabel(p1), "1")
f <- function() {
scale_x_continuous <- function(...) ggplot2::scale_x_continuous("2")
ggplot(mtcars, aes(mpg, wt)) + geom_point()
}
p2 <- f()
expect_equal(xlabel(p2), "2")
rm(scale_x_continuous)
p4 <- ggplot(mtcars, aes(mpg, wt)) + geom_point()
expect_equal(xlabel(p4), waiver())
})
test_that("find_global searches in the right places", {
testenv <- new.env(parent = globalenv())
# This should find the scale object in the package environment
expect_identical(find_global("scale_colour_hue", testenv),
ggplot2::scale_colour_hue)
# Set an object with the same name in the environment
testenv$scale_colour_hue <- "foo"
# Now it should return the new object
expect_identical(find_global("scale_colour_hue", testenv), "foo")
# If we search in the empty env, we should end up with the object
# from the ggplot2 namespace
expect_identical(find_global("scale_colour_hue", emptyenv()),
ggplot2::scale_colour_hue)
})
test_that("scales warn when transforms introduces non-finite values", {
df <- data_frame(x = c(1e1, 1e5), y = c(0, 100))
p <- ggplot(df, aes(x, y)) +
geom_point(size = 5) +
scale_y_log10()
expect_warning(ggplot_build(p), "Transformation introduced infinite values")
})
test_that("scales get their correct titles through layout", {
df <- data_frame(x = c(1e1, 1e5), y = c(0, 100))
p <- ggplot(df, aes(x, y)) +
geom_point(size = 5)
p <- ggplot_build(p)
expect_identical(p$layout$xlabel(p$plot$labels)$primary, "x")
expect_identical(p$layout$ylabel(p$plot$labels)$primary, "y")
})
test_that("size and alpha scales throw appropriate warnings for factors", {
df <- data_frame(
x = 1:3,
y = 1:3,
d = LETTERS[1:3],
o = factor(LETTERS[1:3], ordered = TRUE)
)
p <- ggplot(df, aes(x, y))
# There should be warnings when unordered factors are mapped to size/alpha
expect_warning(
ggplot_build(p + geom_point(aes(size = d))),
"Using size for a discrete variable is not advised."
)
expect_warning(
ggplot_build(p + geom_point(aes(alpha = d))),
"Using alpha for a discrete variable is not advised."
)
expect_warning(
ggplot_build(p + geom_line(aes(linewidth = d, group = 1))),
"Using linewidth for a discrete variable is not advised."
)
# There should be no warnings for ordered factors
expect_warning(ggplot_build(p + geom_point(aes(size = o))), NA)
expect_warning(ggplot_build(p + geom_point(aes(alpha = o))), NA)
})
test_that("shape scale throws appropriate warnings for factors", {
df <- data_frame(
x = 1:3,
y = 1:3,
d = LETTERS[1:3],
o = factor(LETTERS[1:3], ordered = TRUE)
)
p <- ggplot(df, aes(x, y))
# There should be no warnings when unordered factors are mapped to shape
expect_warning(ggplot_build(p + geom_point(aes(shape = d))), NA)
# There should be warnings for ordered factors
expect_warning(
ggplot_build(p + geom_point(aes(shape = o))),
"Using shapes for an ordinal variable is not advised"
)
})
test_that("aesthetics can be set independently of scale name", {
df <- data_frame(
x = LETTERS[1:3],
y = LETTERS[4:6]
)
p <- ggplot(df, aes(x, y, fill = y)) +
scale_colour_manual(values = c("red", "green", "blue"), aesthetics = "fill")
expect_equal(layer_data(p)$fill, c("red", "green", "blue"))
})
test_that("multiple aesthetics can be set with one function call", {
df <- data_frame(
x = LETTERS[1:3],
y = LETTERS[4:6]
)
p <- ggplot(df, aes(x, y, colour = x, fill = y)) +
scale_colour_manual(
values = c("grey20", "grey40", "grey60", "red", "green", "blue"),
aesthetics = c("colour", "fill")
)
expect_equal(layer_data(p)$colour, c("grey20", "grey40", "grey60"))
expect_equal(layer_data(p)$fill, c("red", "green", "blue"))
# color order is determined by data order, and breaks are combined where possible
df <- data_frame(
x = LETTERS[1:3],
y = LETTERS[2:4]
)
p <- ggplot(df, aes(x, y, colour = x, fill = y)) +
scale_colour_manual(
values = c("cyan", "red", "green", "blue"),
aesthetics = c("fill", "colour")
)
expect_equal(layer_data(p)$colour, c("cyan", "red", "green"))
expect_equal(layer_data(p)$fill, c("red", "green", "blue"))
})
test_that("limits with NA are replaced with the min/max of the data for continuous scales", {
make_scale <- function(limits = NULL, data = NULL) {
scale <- continuous_scale("aesthetic", scale_name = "test", palette = identity, limits = limits)
if (!is.null(data)) {
scale$train(data)
}
scale
}
# emptiness
expect_true(make_scale()$is_empty())
expect_false(make_scale(limits = c(0, 1))$is_empty())
expect_true(make_scale(limits = c(0, NA))$is_empty())
expect_true(make_scale(limits = c(NA, NA))$is_empty())
expect_true(make_scale(limits = c(NA, 0))$is_empty())
# limits
expect_equal(make_scale(data = 1:5)$get_limits(), c(1, 5))
expect_equal(make_scale(limits = c(1, 5))$get_limits(), c(1, 5))
expect_equal(make_scale(limits = c(NA, NA))$get_limits(), c(0, 1))
expect_equal(make_scale(limits = c(NA, NA), data = 1:5)$get_limits(), c(1, 5))
expect_equal(make_scale(limits = c(1, NA), data = 1:5)$get_limits(), c(1, 5))
expect_equal(make_scale(limits = c(NA, 5), data = 1:5)$get_limits(), c(1, 5))
})
test_that("scale_apply preserves class and attributes", {
df <- data_frame(
x = structure(c(1, 2), foo = "bar", class = c("baz", "numeric")),
y = c(1, 1),
z = c("A", "B")
)
# Functions to make the 'baz'-class more type stable
`c.baz` <- function(...) {
dots <- list(...)
attris <- attributes(dots[[1]])
x <- do.call("c", lapply(dots, unclass))
attributes(x) <- attris
x
}
`[.baz` <- function(x, i) {
attris <- attributes(x)
x <- unclass(x)[i]
attributes(x) <- attris
x
}
plot <- ggplot(df, aes(x, y)) +
scale_x_continuous() +
# Facetting such that 2 x-scales will exist, i.e. `x` will be subsetted
facet_grid(~ z, scales = "free_x")
plot <- ggplot_build(plot)
# Perform identity transformation via `scale_apply`
out <- with_bindings(scale_apply(
df, "x", "transform", 1:2, plot$layout$panel_scales_x
)[[1]], `c.baz` = `c.baz`, `[.baz` = `[.baz`, .env = global_env())
# Check that it errors on bad scale ids
expect_snapshot_error(scale_apply(
df, "x", "transform", c(NA, 1), plot$layout$panel_scales_x
))
# Check class preservation
expect_s3_class(out, "baz")
expect_s3_class(out, "numeric")
# Check attribute preservation
expect_identical(attr(out, "foo"), "bar")
# Negative control: non-type stable classes don't preserve attributes
class(df$x) <- "foobar"
out <- with_bindings(scale_apply(
df, "x", "transform", 1:2, plot$layout$panel_scales_x
)[[1]], `c.baz` = `c.baz`, `[.baz` = `[.baz`, .env = global_env())
expect_false(inherits(out, "foobar"))
expect_null(attributes(out))
})
test_that("All scale_colour_*() have their American versions", {
# In testthat, the package env contains non-exported functions as well so we
# need to parse NAMESPACE file by ourselves
exports <- readLines(system.file("NAMESPACE", package = "ggplot2"))
colour_scale_exports <- grep("export\\(scale_colour_.*\\)", exports, value = TRUE)
color_scale_exports <- grep("export\\(scale_color_.*\\)", exports, value = TRUE)
expect_equal(
colour_scale_exports,
sub("color", "colour", color_scale_exports)
)
})
test_that("scales accept lambda notation for function input", {
check_lambda <- function(items, ggproto) {
vapply(items, function(x) {
f <- environment(ggproto[[x]])$f
is_lambda(f)
}, logical(1))
}
# Test continuous scale
scale <- scale_fill_gradient(
limits = ~ .x + c(-1, 1),
breaks = ~ seq(.x[1], .x[2], by = 2),
minor_breaks = ~ seq(.x[1], .x[2], by = 1),
labels = ~ toupper(.x),
rescaler = ~ rescale_mid(.x, mid = 0),
oob = ~ oob_squish(.x, .y, only.finite = FALSE)
)
check <- check_lambda(
c("limits", "breaks", "minor_breaks", "labels", "rescaler"),
scale
)
expect_true(all(check))
# Test discrete scale
scale <- scale_x_discrete(
limits = ~ rev(.x),
breaks = ~ .x[-1],
labels = ~ toupper(.x)
)
check <- check_lambda(c("limits", "breaks", "labels"), scale)
expect_true(all(check))
# Test binned scale
scale <- scale_fill_steps(
limits = ~ .x + c(-1, 1),
breaks = ~ seq(.x[1], .x[2], by = 2),
labels = ~ toupper(.x),
rescaler = ~ rescale_mid(.x, mid = 0),
oob = ~ oob_squish(.x, .y, only.finite = FALSE)
)
check <- check_lambda(
c("limits", "breaks", "labels", "rescaler"),
scale
)
expect_true(all(check))
})
test_that("breaks and labels are correctly checked", {
expect_snapshot_error(check_breaks_labels(1:10, letters))
p <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + scale_x_continuous(breaks = NA)
expect_snapshot_error(ggplot_build(p))
p <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + scale_x_continuous(minor_breaks = NA)
expect_snapshot_error(ggplot_build(p))
p <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + scale_x_continuous(labels = NA)
expect_snapshot_error(ggplotGrob(p))
p <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + scale_x_continuous(labels = function(x) 1:2)
expect_snapshot_error(ggplotGrob(p))
p <- ggplot(mtcars) + geom_bar(aes(factor(gear))) + scale_x_discrete(breaks = NA)
expect_snapshot_error(ggplot_build(p))
p <- ggplot(mtcars) + geom_bar(aes(factor(gear))) + scale_x_discrete(labels = NA)
expect_snapshot_error(ggplotGrob(p))
p <- ggplot(mtcars) + geom_bar(aes(mpg)) + scale_x_binned(breaks = NA)
expect_snapshot_error(ggplot_build(p))
p <- ggplot(mtcars) + geom_bar(aes(mpg)) + scale_x_binned(labels = NA)
expect_snapshot_error(ggplotGrob(p))
p <- ggplot(mtcars) + geom_bar(aes(mpg)) + scale_x_binned(labels = function(x) 1:2)
expect_snapshot_error(ggplotGrob(p))
})
test_that("staged aesthetics are backtransformed properly (#4155)", {
p <- ggplot(data.frame(value = 16)) +
geom_point(aes(stage(value, after_stat = x / 2), 0)) +
scale_x_sqrt(limits = c(0, 16), breaks = c(2, 4, 8))
# x / 2 should be 16 / 2 = 8, thus the result should be sqrt(8) on scale_x_sqrt()
expect_equal(layer_data(p)$x, sqrt(8))
})
|