1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
|
#' @export
#' @rdname ggsf
#' @usage NULL
#' @format NULL
CoordSf <- ggproto("CoordSf", CoordCartesian,
# CoordSf needs to keep track of some parameters
# internally as the plot is built. These are stored
# here.
params = list(),
# the method used to convert limits across nonlinear
# coordinate systems.
lims_method = "cross",
get_default_crs = function(self) {
self$default_crs %||% self$params$default_crs
},
setup_params = function(self, data) {
crs <- self$determine_crs(data)
params <- list(
crs = crs,
default_crs = self$default_crs
)
self$params <- params
params
},
# Helper function for setup_params(),
# finds the first CRS if not already supplied
determine_crs = function(self, data) {
if (!is.null(self$crs)) {
return(self$crs)
}
for (layer_data in data) {
if (is_sf(layer_data)) {
geometry <- sf::st_geometry(layer_data)
} else
next
crs <- sf::st_crs(geometry)
if (is.na(crs))
next
return(crs)
}
NULL
},
# Transform all layers to common CRS (if provided)
setup_data = function(data, params) {
if (is.null(params$crs))
return(data)
lapply(data, function(layer_data) {
if (! is_sf(layer_data)) {
return(layer_data)
}
idx <- vapply(layer_data, inherits, what = "sfc", FUN.VALUE = logical(1L))
layer_data[idx] <- lapply(layer_data[idx], sf::st_transform, crs = params$crs)
layer_data
})
},
# Allow sf layer to record the bounding boxes of elements
record_bbox = function(self, xmin, xmax, ymin, ymax) {
bbox <- self$params$bbox
bbox$xmin <- min(bbox$xmin, xmin)
bbox$xmax <- max(bbox$xmax, xmax)
bbox$ymin <- min(bbox$ymin, ymin)
bbox$ymax <- max(bbox$ymax, ymax)
self$params$bbox <- bbox
},
transform = function(self, data, panel_params) {
# we need to transform all non-sf data into the correct coordinate system
source_crs <- panel_params$default_crs
target_crs <- panel_params$crs
# normalize geometry data, it should already be in the correct crs here
data[[ geom_column(data) ]] <- sf_rescale01(
data[[ geom_column(data) ]],
panel_params$x_range,
panel_params$y_range
)
# transform and normalize regular position data
data <- transform_position(
sf_transform_xy(data, target_crs, source_crs),
function(x) rescale(x, from = panel_params$x_range),
function(x) rescale(x, from = panel_params$y_range)
)
transform_position(data, squish_infinite, squish_infinite)
},
# internal function used by setup_panel_params,
# overrides the graticule labels based on scale settings if necessary
fixup_graticule_labels = function(self, graticule, scale_x, scale_y, params = list()) {
needs_parsing <- rep(FALSE, nrow(graticule))
needs_autoparsing <- rep(FALSE, nrow(graticule))
x_breaks <- graticule$degree[graticule$type == "E"]
if (is.null(scale_x$labels)) {
x_labels <- rep(NA, length(x_breaks))
} else if (is.waive(scale_x$labels)) {
x_labels <- graticule$degree_label[graticule$type == "E"]
needs_autoparsing[graticule$type == "E"] <- TRUE
} else {
if (is.function(scale_x$labels)) {
x_labels <- scale_x$labels(x_breaks)
} else {
x_labels <- scale_x$labels
}
# all labels need to be temporarily stored as character vectors,
# but expressions need to be parsed afterwards
needs_parsing[graticule$type == "E"] <- !(is.character(x_labels) || is.factor(x_labels))
x_labels <- as.character(x_labels)
}
if (length(x_labels) != length(x_breaks)) {
cli::cli_abort("{.arg breaks} and {.arg labels} along {.code x} direction have different lengths.")
}
graticule$degree_label[graticule$type == "E"] <- x_labels
y_breaks <- graticule$degree[graticule$type == "N"]
if (is.null(scale_y$labels)) {
y_labels <- rep(NA, length(y_breaks))
} else if (is.waive(scale_y$labels)) {
y_labels <- graticule$degree_label[graticule$type == "N"]
needs_autoparsing[graticule$type == "N"] <- TRUE
} else {
if (is.function(scale_y$labels)) {
y_labels <- scale_y$labels(y_breaks)
} else {
y_labels <- scale_y$labels
}
# all labels need to be temporarily stored as character vectors,
# but expressions need to be parsed afterwards
needs_parsing[graticule$type == "N"] <- !(is.character(y_labels) || is.factor(y_labels))
y_labels <- as.character(y_labels)
}
if (length(y_labels) != length(y_breaks)) {
cli::cli_abort("{.arg breaks} and {.arg labels} along {.code y} direction have different lengths.")
}
graticule$degree_label[graticule$type == "N"] <- y_labels
# Parse labels if requested/needed
has_degree <- grepl("\\bdegree\\b", graticule$degree_label)
needs_parsing <- needs_parsing | (needs_autoparsing & has_degree)
if (any(needs_parsing)) {
labels <- as.list(graticule$degree_label)
labels[needs_parsing] <- parse_safe(graticule$degree_label[needs_parsing])
graticule$degree_label <- labels
}
graticule
},
setup_panel_params = function(self, scale_x, scale_y, params = list()) {
# expansion factors for scale limits
expansion_x <- default_expansion(scale_x, expand = self$expand)
expansion_y <- default_expansion(scale_y, expand = self$expand)
# get scale limits and coord limits and merge together
# coord limits take precedence over scale limits
scale_xlim <- scale_x$get_limits()
scale_ylim <- scale_y$get_limits()
coord_xlim <- self$limits$x %||% c(NA_real_, NA_real_)
coord_ylim <- self$limits$y %||% c(NA_real_, NA_real_)
scale_xlim <- ifelse(is.na(coord_xlim), scale_xlim, coord_xlim)
scale_ylim <- ifelse(is.na(coord_ylim), scale_ylim, coord_ylim)
# now, transform limits to common crs
# note: return value is not a true bounding box, but a
# list of x and y values whose max/mins are the bounding
# box
scales_bbox <- calc_limits_bbox(
self$lims_method,
scale_xlim, scale_ylim,
params$crs, params$default_crs
)
# merge coord bbox into scale limits if scale limits not explicitly set
if (is.null(self$limits$x) && is.null(self$limits$y) &&
is.null(scale_x$limits) && is.null(scale_y$limits)) {
coord_bbox <- self$params$bbox
scales_xrange <- range(scales_bbox$x, coord_bbox$xmin, coord_bbox$xmax, na.rm = TRUE)
scales_yrange <- range(scales_bbox$y, coord_bbox$ymin, coord_bbox$ymax, na.rm = TRUE)
} else if (any(!is.finite(scales_bbox$x) | !is.finite(scales_bbox$y))) {
if (self$lims_method != "geometry_bbox") {
cli::cli_warn(c(
"Projection of {.field x} or {.field y} limits failed in {.fn coord_sf}.",
"i" = "Consider setting {.code lims_method = {.val geometry_bbox}} or {.code default_crs = NULL}."
))
}
coord_bbox <- self$params$bbox
scales_xrange <- c(coord_bbox$xmin, coord_bbox$xmax) %||% c(0, 0)
scales_yrange <- c(coord_bbox$ymin, coord_bbox$ymax) %||% c(0, 0)
} else {
scales_xrange <- range(scales_bbox$x, na.rm = TRUE)
scales_yrange <- range(scales_bbox$y, na.rm = TRUE)
}
# apply coordinate expansion
x_range <- expand_limits_continuous(scales_xrange, expansion_x)
y_range <- expand_limits_continuous(scales_yrange, expansion_y)
bbox <- c(
x_range[1], y_range[1],
x_range[2], y_range[2]
)
# Generate graticule and rescale to plot coords
graticule <- sf::st_graticule(
bbox,
crs = params$crs,
lat = scale_y$breaks %|W|% NULL,
lon = scale_x$breaks %|W|% NULL,
datum = self$datum,
ndiscr = self$ndiscr
)
# override graticule labels provided by sf::st_graticule() if necessary
graticule <- self$fixup_graticule_labels(graticule, scale_x, scale_y, params)
# Convert graticule to viewscales for axis guides
viewscales <- Map(
view_scales_from_graticule,
scale = list(x = scale_x, y = scale_y, x.sec = scale_x, y.sec = scale_y),
aesthetic = c("x", "y", "x.sec", "y.sec"),
label = self$label_axes[c("bottom", "left", "top", "right")],
MoreArgs = list(
graticule = graticule,
bbox = bbox,
label_graticule = self$label_graticule
)
)
# Rescale graticule for panel grid
sf::st_geometry(graticule) <- sf_rescale01(sf::st_geometry(graticule), x_range, y_range)
graticule$x_start <- rescale(graticule$x_start, from = x_range)
graticule$x_end <- rescale(graticule$x_end, from = x_range)
graticule$y_start <- rescale(graticule$y_start, from = y_range)
graticule$y_end <- rescale(graticule$y_end, from = y_range)
list2(
x_range = x_range,
y_range = y_range,
graticule = graticule,
crs = params$crs,
default_crs = params$default_crs,
!!!viewscales
)
},
train_panel_guides = function(self, panel_params, layers, params = list()) {
# The guide positions are already in the target CRS, so we mask the default
# CRS to prevent a double transformation.
panel_params$guides <- ggproto_parent(Coord, self)$train_panel_guides(
vec_assign(panel_params, "default_crs", panel_params["crs"]),
layers, params
)$guides
panel_params
},
backtransform_range = function(self, panel_params) {
target_crs <- panel_params$default_crs
source_crs <- panel_params$crs
x <- panel_params$x_range
y <- panel_params$y_range
data <- list(x = c(x, x), y = c(y, rev(y)))
data <- sf_transform_xy(data, target_crs, source_crs)
list(x = range(data$x), y = range(data$y))
},
range = function(panel_params) {
list(x = panel_params$x_range, y = panel_params$y_range)
},
# CoordSf enforces a fixed aspect ratio -> axes cannot be changed freely under faceting
is_free = function() FALSE,
# for regular geoms (such as geom_path, geom_polygon, etc.), CoordSf is non-linear
# if the default_crs option is being used, i.e., not set to NULL
is_linear = function(self) is.null(self$get_default_crs()),
distance = function(self, x, y, panel_params) {
d <- self$backtransform_range(panel_params)
max_dist <- dist_euclidean(d$x, d$y)
dist_euclidean(x, y) / max_dist
},
aspect = function(self, panel_params) {
if (isTRUE(sf::st_is_longlat(panel_params$crs))) {
# Contributed by @edzer
mid_y <- mean(panel_params$y_range)
ratio <- cos(mid_y * pi / 180)
} else {
# Assume already projected
ratio <- 1
}
diff(panel_params$y_range) / diff(panel_params$x_range) / ratio
},
labels = function(labels, panel_params) labels,
render_bg = function(self, panel_params, theme) {
el <- calc_element("panel.grid.major", theme)
# we don't draw the graticules if the major panel grid is
# turned off
if (inherits(el, "element_blank")) {
grobs <- list(element_render(theme, "panel.background"))
} else {
line_gp <- gpar(
col = el$colour,
lwd = len0_null(el$linewidth * .pt),
lty = el$linetype
)
grobs <- c(
list(element_render(theme, "panel.background")),
lapply(sf::st_geometry(panel_params$graticule), sf::st_as_grob, gp = line_gp)
)
}
ggname("grill", inject(grobTree(!!!grobs)))
}
)
#' Transform spatial position data
#'
#' Helper function that can transform spatial position data (pairs of x, y
#' values) among coordinate systems. This is implemented as a thin wrapper
#' around [sf::sf_project()].
#'
#' @param data Data frame or list containing numerical columns `x` and `y`.
#' @param target_crs,source_crs Target and source coordinate reference systems.
#' If `NULL` or `NA`, the data is not transformed.
#' @param authority_compliant logical; `TRUE` means handle axis order authority
#' compliant (e.g. EPSG:4326 implying `x = lat`, `y = lon`), `FALSE` means use
#' visualisation order (i.e. always `x = lon`, `y = lat`). Default is `FALSE`.
#' @return A copy of the input data with `x` and `y` replaced by transformed values.
#' @examples
#' if (requireNamespace("sf", quietly = TRUE)) {
#' # location of cities in NC by long (x) and lat (y)
#' data <- data.frame(
#' city = c("Charlotte", "Raleigh", "Greensboro"),
#' x = c(-80.843, -78.639, -79.792),
#' y = c(35.227, 35.772, 36.073)
#' )
#'
#' # transform to projected coordinates
#' data_proj <- sf_transform_xy(data, 3347, 4326)
#' data_proj
#'
#' # transform back
#' sf_transform_xy(data_proj, 4326, 3347)
#' }
#' @keywords internal
#' @export
sf_transform_xy <- function(data, target_crs, source_crs, authority_compliant = FALSE) {
if (identical(target_crs, source_crs) ||
is.null(target_crs) || is.null(source_crs) || is.null(data) ||
is.na(target_crs) || is.na(source_crs) ||
!all(c("x", "y") %in% names(data))) {
return(data)
}
sf_data <- cbind(data$x, data$y)
out <- sf::sf_project(
sf::st_crs(source_crs), sf::st_crs(target_crs),
sf_data,
keep = TRUE, warn = FALSE,
authority_compliant = authority_compliant
)
out <- ifelse(is.finite(out), out, NA) # replace any infinites with NA
data$x <- out[, 1]
data$y <- out[, 2]
data
}
## helper functions to normalize geometry and position data
# normalize geometry data (variable x is geometry column)
sf_rescale01 <- function(x, x_range, y_range) {
if (is.null(x)) {
return(x)
}
sf::st_normalize(x, c(x_range[1], y_range[1], x_range[2], y_range[2]))
}
# different limits methods
calc_limits_bbox <- function(method, xlim, ylim, crs, default_crs) {
if (any(!is.finite(c(xlim, ylim))) && method != "geometry_bbox") {
cli::cli_abort(c(
"Scale limits cannot be mapped onto spatial coordinates in {.fn coord_sf}.",
"i" = "Consider setting {.code lims_method = \"geometry_bbox\"} or {.code default_crs = NULL}."
))
}
bbox <- switch(
method,
# For method "box", we take the limits and turn them into a
# box. We subdivide the box edges into multiple segments to
# better cover the respective area under non-linear transformation
box = list(
x = c(
rep(xlim[1], 20), seq(xlim[1], xlim[2], length.out = 20),
rep(xlim[2], 20), seq(xlim[2], xlim[1], length.out = 20)
),
y = c(
seq(ylim[1], ylim[2], length.out = 20), rep(ylim[2], 20),
seq(ylim[2], ylim[1], length.out = 20), rep(ylim[1], 20)
)
),
# For method "geometry_bbox" we ignore all limits info provided here
geometry_bbox = list(
x = c(NA_real_, NA_real_),
y = c(NA_real_, NA_real_)
),
# For method "orthogonal" we simply return what we are given
orthogonal = list(
x = xlim,
y = ylim
),
# For method "cross" we take the mid-point along each side of
# the scale range for better behavior when box is nonlinear or
# rotated in projected space
#
# Method "cross" is also the default
cross =,
list(
x = c(rep(mean(xlim), 20), seq(xlim[1], xlim[2], length.out = 20)),
y = c(seq(ylim[1], ylim[2], length.out = 20), rep(mean(ylim), 20))
)
)
sf_transform_xy(bbox, crs, default_crs)
}
#' @param crs The coordinate reference system (CRS) into which all data should
#' be projected before plotting. If not specified, will use the CRS defined
#' in the first sf layer of the plot.
#' @param default_crs The default CRS to be used for non-sf layers (which
#' don't carry any CRS information) and scale limits. The default value of
#' `NULL` means that the setting for `crs` is used. This implies that all
#' non-sf layers and scale limits are assumed to be specified in projected
#' coordinates. A useful alternative setting is `default_crs = sf::st_crs(4326)`,
#' which means x and y positions are interpreted as longitude and latitude,
#' respectively, in the World Geodetic System 1984 (WGS84).
#' @param xlim,ylim Limits for the x and y axes. These limits are specified
#' in the units of the default CRS. By default, this means projected coordinates
#' (`default_crs = NULL`). How limit specifications translate into the exact
#' region shown on the plot can be confusing when non-linear or rotated coordinate
#' systems are used as the default crs. First, different methods can be preferable
#' under different conditions. See parameter `lims_method` for details. Second,
#' specifying limits along only one direction can affect the automatically generated
#' limits along the other direction. Therefore, it is best to always specify limits
#' for both x and y. Third, specifying limits via position scales or `xlim()`/`ylim()`
#' is strongly discouraged, as it can result in data points being dropped from the plot even
#' though they would be visible in the final plot region.
#' @param lims_method Method specifying how scale limits are converted into
#' limits on the plot region. Has no effect when `default_crs = NULL`.
#' For a very non-linear CRS (e.g., a perspective centered
#' around the North pole), the available methods yield widely differing results, and
#' you may want to try various options. Methods currently implemented include `"cross"`
#' (the default), `"box"`, `"orthogonal"`, and `"geometry_bbox"`. For method `"cross"`,
#' limits along one direction (e.g., longitude) are applied at the midpoint of the
#' other direction (e.g., latitude). This method avoids excessively large limits for
#' rotated coordinate systems but means that sometimes limits need to be expanded a
#' little further if extreme data points are to be included in the final plot region.
#' By contrast, for method `"box"`, a box is generated out of the limits along both directions,
#' and then limits in projected coordinates are chosen such that the entire box is
#' visible. This method can yield plot regions that are too large. Finally, method
#' `"orthogonal"` applies limits separately along each axis, and method
#' `"geometry_bbox"` ignores all limit information except the bounding boxes of any
#' objects in the `geometry` aesthetic.
#' @param datum CRS that provides datum to use when generating graticules.
#' @param label_axes Character vector or named list of character values
#' specifying which graticule lines (meridians or parallels) should be labeled on
#' which side of the plot. Meridians are indicated by `"E"` (for East) and
#' parallels by `"N"` (for North). Default is `"--EN"`, which specifies
#' (clockwise from the top) no labels on the top, none on the right, meridians
#' on the bottom, and parallels on the left. Alternatively, this setting could have been
#' specified with `list(bottom = "E", left = "N")`.
#'
#' This parameter can be used alone or in combination with `label_graticule`.
#' @param label_graticule Character vector indicating which graticule lines should be labeled
#' where. Meridians run north-south, and the letters `"N"` and `"S"` indicate that
#' they should be labeled on their north or south end points, respectively.
#' Parallels run east-west, and the letters `"E"` and `"W"` indicate that they
#' should be labeled on their east or west end points, respectively. Thus,
#' `label_graticule = "SW"` would label meridians at their south end and parallels at
#' their west end, whereas `label_graticule = "EW"` would label parallels at both
#' ends and meridians not at all. Because meridians and parallels can in general
#' intersect with any side of the plot panel, for any choice of `label_graticule` labels
#' are not guaranteed to reside on only one particular side of the plot panel. Also,
#' `label_graticule` can cause labeling artifacts, in particular if a graticule line
#' coincides with the edge of the plot panel. In such circumstances, `label_axes` will
#' generally yield better results and should be used instead.
#'
#' This parameter can be used alone or in combination with `label_axes`.
#' @param ndiscr Number of segments to use for discretising graticule lines;
#' try increasing this number when graticules look incorrect.
#' @inheritParams coord_cartesian
#' @export
#' @rdname ggsf
coord_sf <- function(xlim = NULL, ylim = NULL, expand = TRUE,
crs = NULL, default_crs = NULL,
datum = sf::st_crs(4326),
label_graticule = waiver(),
label_axes = waiver(), lims_method = "cross",
ndiscr = 100, default = FALSE, clip = "on") {
if (is.waive(label_graticule) && is.waive(label_axes)) {
# if both `label_graticule` and `label_axes` are set to waive then we
# use the default of labels on the left and at the bottom
label_graticule <- ""
label_axes <- "--EN"
} else {
# if at least one is set we ignore the other
label_graticule <- label_graticule %|W|% ""
label_axes <- label_axes %|W|% ""
}
if (is.character(label_axes)) {
label_axes <- parse_axes_labeling(label_axes)
} else if (!is.list(label_axes)) {
cli::cli_abort("Panel labeling format not recognized.")
}
if (is.character(label_graticule)) {
label_graticule <- unlist(strsplit(label_graticule, ""))
} else {
cli::cli_abort("Graticule labeling format not recognized.")
}
# switch limit method to "orthogonal" if not specified and default_crs indicates projected coords
if (is.null(default_crs) && is_missing(lims_method)) {
lims_method <- "orthogonal"
} else {
lims_method <- arg_match0(lims_method, c("cross", "box", "orthogonal", "geometry_bbox"))
}
check_coord_limits(xlim)
check_coord_limits(ylim)
ggproto(NULL, CoordSf,
limits = list(x = xlim, y = ylim),
lims_method = lims_method,
datum = datum,
crs = crs,
default_crs = default_crs,
label_axes = label_axes,
label_graticule = label_graticule,
ndiscr = ndiscr,
expand = expand,
default = default,
clip = clip
)
}
parse_axes_labeling <- function(x) {
labs = unlist(strsplit(x, ""))
list(top = labs[1], right = labs[2], bottom = labs[3], left = labs[4])
}
#' ViewScale from graticule
#'
#' This function converts a graticule and other CoordSf's settings to a
#' ViewScale with the appropriate `breaks` and `labels` to be rendered by a
#' guide.
#'
#' @param graticule A graticule as produced by `sf::st_graticule()`.
#' @param scale An x or y position scale for a panel.
#' @param aesthetic One of `"x"`, `"y"`, `"x.sec"` or `"y.sec'` specifying the
#' plot position of the guide.
#' @param label One of `"E"` for meridians or `"N"` for parallels. If neither,
#' no tick information will be produced.
#' @param label_graticule See `?coord_sf`.
#' @param bbox A `numeric(4)` bounding box with 'xmin', 'ymin', 'xmax' and
#' 'ymax' positions.
#'
#' @return A `ViewScale` object.
#' @noRd
#' @keywords internal
view_scales_from_graticule <- function(graticule, scale, aesthetic,
label, label_graticule, bbox) {
# Setup position specific parameters
# Note that top/bottom doesn't necessarily mean to label the meridians and
# left/right doesn't necessarily mean to label the parallels.
position <- switch(
arg_match0(aesthetic, c("x", "x.sec", "y", "y.sec")),
"x" = "bottom",
"x.sec" = "top",
"y" = "left",
"y.sec" = "right"
)
axis <- gsub("\\.sec$", "", aesthetic)
if (axis == "x") {
orth <- "y"
thres <- bbox[c(2, 4)] # To determine graticule is close to axis
limits <- bbox[c(1, 3)] # To use as scale limits
} else {
orth <- "x"
thres <- bbox[c(1, 3)]
limits <- bbox[c(2, 4)]
}
# Determine what columns in the graticule contain the starts and ends of the
# axis direction and the orthogonal direction.
axis_start <- paste0(axis, "_start")
axis_end <- paste0(axis, "_end")
orth_start <- paste0(orth, "_start")
orth_end <- paste0(orth, "_end")
# Find the start and endpoints in the graticule that are in close proximity
# to the axis position to generate 'accepted' starts and ends. Close proximity
# here is defined as within 0.1% of the scale range of the *orthogonal* scale.
if (position %in% c("top", "right")) {
thres <- thres[1] + 0.999 * diff(thres)
accept_start <- graticule[[orth_start]] > thres
accept_end <- graticule[[orth_end]] > thres
} else {
thres <- thres[1] + 0.001 * diff(thres)
accept_start <- graticule[[orth_start]] < thres
accept_end <- graticule[[orth_end]] < thres
}
# Parsing the information of the `label_axes` argument:
# should we label the meridians ("E") or parallels ("N")?
type <- graticule$type
idx_start <- idx_end <- integer(0)
idx_start <- c(idx_start, which(type == label & accept_start))
idx_end <- c(idx_end, which(type == label & accept_end))
# Parsing the information of the `label_graticule` argument. Because
# geometry can be rotated, not all meridians are guaranteed to intersect the
# top/bottom axes and likewise not all parallels are guaranteed to intersect
# the left/right axes.
if ("S" %in% label_graticule) {
idx_start <- c(idx_start, which(type == "E" & accept_start))
}
if ("N" %in% label_graticule) {
idx_end <- c(idx_end, which(type == "E" & accept_end))
}
if ("W" %in% label_graticule) {
idx_start <- c(idx_start, which(type == "N" & accept_start))
}
if ("E" %in% label_graticule) {
idx_end <- c(idx_end, which(type == "N" & accept_end))
}
# Combine start and end positions for tick marks and labels
tick_start <- vec_slice(graticule, unique0(idx_start))
tick_end <- vec_slice(graticule, unique0(idx_end))
positions <- c(field(tick_start, axis_start), field(tick_end, axis_end))
labels <- c(tick_start$degree_label, tick_end$degree_label)
# The positions/labels need to be ordered for axis dodging
ord <- order(positions)
positions <- positions[ord]
labels <- labels[ord]
# Find out if the scale has defined guides
if (scale$position != position) {
# Try to use secondary axis' guide
guide <- scale$secondary.axis$guide %||% waiver()
if (is.derived(guide)) {
guide <- scale$guide
}
} else {
guide <- scale$guide
}
# Instruct default guides: no ticks or labels should default to no guide
if (length(positions) > 0) {
guide <- guide %|W|% "axis"
} else {
guide <- guide %|W|% "none"
}
ggproto(
NULL, ViewScale,
scale = scale,
guide = guide,
position = position,
aesthetics = scale$aesthetics,
name = scale$name,
scale_is_discrete = scale$is_discrete(),
limits = limits,
continuous_range = limits,
breaks = positions,
minor_breaks = NULL,
# This viewscale has fixed labels, not dynamic ones as other viewscales
# might have.
labels = labels,
get_labels = function(self, breaks = self$get_breaks()) {
self$labels
}
)
}
|