1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
#' Bar charts
#'
#' There are two types of bar charts: `geom_bar()` and `geom_col()`.
#' `geom_bar()` makes the height of the bar proportional to the number of
#' cases in each group (or if the `weight` aesthetic is supplied, the sum
#' of the weights). If you want the heights of the bars to represent values
#' in the data, use `geom_col()` instead. `geom_bar()` uses `stat_count()` by
#' default: it counts the number of cases at each x position. `geom_col()`
#' uses `stat_identity()`: it leaves the data as is.
#'
#' A bar chart uses height to represent a value, and so the base of the
#' bar must always be shown to produce a valid visual comparison.
#' Proceed with caution when using transformed scales with a bar chart.
#' It's important to always use a meaningful reference point for the base of the bar.
#' For example, for log transformations the reference point is 1. In fact, when
#' using a log scale, `geom_bar()` automatically places the base of the bar at 1.
#' Furthermore, never use stacked bars with a transformed scale, because scaling
#' happens before stacking. As a consequence, the height of bars will be wrong
#' when stacking occurs with a transformed scale.
#'
#' By default, multiple bars occupying the same `x` position will be stacked
#' atop one another by [position_stack()]. If you want them to be dodged
#' side-to-side, use [position_dodge()] or [position_dodge2()]. Finally,
#' [position_fill()] shows relative proportions at each `x` by stacking the
#' bars and then standardising each bar to have the same height.
#'
#' @eval rd_orientation()
#'
#' @eval rd_aesthetics("geom", "bar")
#' @eval rd_aesthetics("geom", "col")
#' @eval rd_aesthetics("stat", "count")
#' @seealso
#' [geom_histogram()] for continuous data,
#' [position_dodge()] and [position_dodge2()] for creating side-by-side
#' bar charts.
#' @export
#' @inheritParams layer
#' @inheritParams geom_point
#' @param orientation The orientation of the layer. The default (`NA`)
#' automatically determines the orientation from the aesthetic mapping. In the
#' rare event that this fails it can be given explicitly by setting `orientation`
#' to either `"x"` or `"y"`. See the *Orientation* section for more detail.
#' @param just Adjustment for column placement. Set to `0.5` by default, meaning
#' that columns will be centered about axis breaks. Set to `0` or `1` to place
#' columns to the left/right of axis breaks. Note that this argument may have
#' unintended behaviour when used with alternative positions, e.g.
#' `position_dodge()`.
#' @param width Bar width. By default, set to 90% of the [resolution()] of the
#' data.
#' @param geom,stat Override the default connection between `geom_bar()` and
#' `stat_count()`. For more information about overriding these connections,
#' see how the [stat][layer_stats] and [geom][layer_geoms] arguments work.
#' @examples
#' # geom_bar is designed to make it easy to create bar charts that show
#' # counts (or sums of weights)
#' g <- ggplot(mpg, aes(class))
#' # Number of cars in each class:
#' g + geom_bar()
#' # Total engine displacement of each class
#' g + geom_bar(aes(weight = displ))
#' # Map class to y instead to flip the orientation
#' ggplot(mpg) + geom_bar(aes(y = class))
#'
#' # Bar charts are automatically stacked when multiple bars are placed
#' # at the same location. The order of the fill is designed to match
#' # the legend
#' g + geom_bar(aes(fill = drv))
#'
#' # If you need to flip the order (because you've flipped the orientation)
#' # call position_stack() explicitly:
#' ggplot(mpg, aes(y = class)) +
#' geom_bar(aes(fill = drv), position = position_stack(reverse = TRUE)) +
#' theme(legend.position = "top")
#'
#' # To show (e.g.) means, you need geom_col()
#' df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2))
#' ggplot(df, aes(trt, outcome)) +
#' geom_col()
#' # But geom_point() displays exactly the same information and doesn't
#' # require the y-axis to touch zero.
#' ggplot(df, aes(trt, outcome)) +
#' geom_point()
#'
#' # You can also use geom_bar() with continuous data, in which case
#' # it will show counts at unique locations
#' df <- data.frame(x = rep(c(2.9, 3.1, 4.5), c(5, 10, 4)))
#' ggplot(df, aes(x)) + geom_bar()
#' # cf. a histogram of the same data
#' ggplot(df, aes(x)) + geom_histogram(binwidth = 0.5)
#'
#' # Use `just` to control how columns are aligned with axis breaks:
#' df <- data.frame(x = as.Date(c("2020-01-01", "2020-02-01")), y = 1:2)
#' # Columns centered on the first day of the month
#' ggplot(df, aes(x, y)) + geom_col(just = 0.5)
#' # Columns begin on the first day of the month
#' ggplot(df, aes(x, y)) + geom_col(just = 1)
geom_bar <- function(mapping = NULL, data = NULL,
stat = "count", position = "stack",
...,
just = 0.5,
width = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomBar,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list2(
just = just,
width = width,
na.rm = na.rm,
orientation = orientation,
...
)
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
#' @include geom-rect.R
GeomBar <- ggproto("GeomBar", GeomRect,
required_aes = c("x", "y"),
# These aes columns are created by setup_data(). They need to be listed here so
# that GeomRect$handle_na() properly removes any bars that fall outside the defined
# limits, not just those for which x and y are outside the limits
non_missing_aes = c("xmin", "xmax", "ymin", "ymax"),
setup_params = function(data, params) {
params$flipped_aes <- has_flipped_aes(data, params)
params
},
extra_params = c("just", "na.rm", "orientation"),
setup_data = function(data, params) {
data$flipped_aes <- params$flipped_aes
data <- flip_data(data, params$flipped_aes)
data$width <- data$width %||%
params$width %||% (min(vapply(
split(data$x, data$PANEL, drop = TRUE),
resolution, numeric(1), zero = FALSE
)) * 0.9)
data$just <- params$just %||% 0.5
data <- transform(data,
ymin = pmin(y, 0), ymax = pmax(y, 0),
xmin = x - width * just, xmax = x + width * (1 - just),
width = NULL, just = NULL
)
flip_data(data, params$flipped_aes)
},
draw_panel = function(self, data, panel_params, coord, lineend = "butt",
linejoin = "mitre", width = NULL, flipped_aes = FALSE) {
# Hack to ensure that width is detected as a parameter
ggproto_parent(GeomRect, self)$draw_panel(
data,
panel_params,
coord,
lineend = lineend,
linejoin = linejoin
)
},
rename_size = TRUE
)
|