1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
#' Connect observations
#'
#' `geom_path()` connects the observations in the order in which they appear
#' in the data. `geom_line()` connects them in order of the variable on the
#' x axis. `geom_step()` creates a stairstep plot, highlighting exactly
#' when changes occur. The `group` aesthetic determines which cases are
#' connected together.
#'
#' An alternative parameterisation is [geom_segment()], where each line
#' corresponds to a single case which provides the start and end coordinates.
#'
#' @eval rd_orientation()
#'
#' @eval rd_aesthetics("geom", "path")
#' @inheritParams layer
#' @inheritParams geom_bar
#' @param lineend Line end style (round, butt, square).
#' @param linejoin Line join style (round, mitre, bevel).
#' @param linemitre Line mitre limit (number greater than 1).
#' @param arrow Arrow specification, as created by [grid::arrow()].
#' @seealso
#' [geom_polygon()]: Filled paths (polygons);
#' [geom_segment()]: Line segments
#' @section Missing value handling:
#' `geom_path()`, `geom_line()`, and `geom_step()` handle `NA` as follows:
#'
#' * If an `NA` occurs in the middle of a line, it breaks the line. No warning
#' is shown, regardless of whether `na.rm` is `TRUE` or `FALSE`.
#' * If an `NA` occurs at the start or the end of the line and `na.rm` is `FALSE`
#' (default), the `NA` is removed with a warning.
#' * If an `NA` occurs at the start or the end of the line and `na.rm` is `TRUE`,
#' the `NA` is removed silently, without warning.
#' @export
#' @examples
#' # geom_line() is suitable for time series
#' ggplot(economics, aes(date, unemploy)) + geom_line()
#' ggplot(economics_long, aes(date, value01, colour = variable)) +
#' geom_line()
#'
#' # You can get a timeseries that run vertically by setting the orientation
#' ggplot(economics, aes(unemploy, date)) + geom_line(orientation = "y")
#'
#' # geom_step() is useful when you want to highlight exactly when
#' # the y value changes
#' recent <- economics[economics$date > as.Date("2013-01-01"), ]
#' ggplot(recent, aes(date, unemploy)) + geom_line()
#' ggplot(recent, aes(date, unemploy)) + geom_step()
#'
#' # geom_path lets you explore how two variables are related over time,
#' # e.g. unemployment and personal savings rate
#' m <- ggplot(economics, aes(unemploy/pop, psavert))
#' m + geom_path()
#' m + geom_path(aes(colour = as.numeric(date)))
#'
#' # Changing parameters ----------------------------------------------
#' ggplot(economics, aes(date, unemploy)) +
#' geom_line(colour = "red")
#'
#' # Use the arrow parameter to add an arrow to the line
#' # See ?arrow for more details
#' c <- ggplot(economics, aes(x = date, y = pop))
#' c + geom_line(arrow = arrow())
#' c + geom_line(
#' arrow = arrow(angle = 15, ends = "both", type = "closed")
#' )
#'
#' # Control line join parameters
#' df <- data.frame(x = 1:3, y = c(4, 1, 9))
#' base <- ggplot(df, aes(x, y))
#' base + geom_path(linewidth = 10)
#' base + geom_path(linewidth = 10, lineend = "round")
#' base + geom_path(linewidth = 10, linejoin = "mitre", lineend = "butt")
#'
#' # You can use NAs to break the line.
#' df <- data.frame(x = 1:5, y = c(1, 2, NA, 4, 5))
#' ggplot(df, aes(x, y)) + geom_point() + geom_line()
#'
#' \donttest{
#' # Setting line type vs colour/size
#' # Line type needs to be applied to a line as a whole, so it can
#' # not be used with colour or size that vary across a line
#' x <- seq(0.01, .99, length.out = 100)
#' df <- data.frame(
#' x = rep(x, 2),
#' y = c(qlogis(x), 2 * qlogis(x)),
#' group = rep(c("a","b"),
#' each = 100)
#' )
#' p <- ggplot(df, aes(x=x, y=y, group=group))
#' # These work
#' p + geom_line(linetype = 2)
#' p + geom_line(aes(colour = group), linetype = 2)
#' p + geom_line(aes(colour = x))
#' # But this doesn't
#' should_stop(p + geom_line(aes(colour = x), linetype=2))
#' }
geom_path <- function(mapping = NULL, data = NULL,
stat = "identity", position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 10,
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomPath,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list2(
lineend = lineend,
linejoin = linejoin,
linemitre = linemitre,
arrow = arrow,
na.rm = na.rm,
...
)
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
GeomPath <- ggproto("GeomPath", Geom,
required_aes = c("x", "y"),
default_aes = aes(colour = "black", linewidth = 0.5, linetype = 1, alpha = NA),
non_missing_aes = c("linewidth", "colour", "linetype"),
handle_na = function(self, data, params) {
# Drop missing values at the start or end of a line - can't drop in the
# middle since you expect those to be shown by a break in the line
aesthetics <- c(self$required_aes, self$non_missing_aes)
complete <- stats::complete.cases(data[names(data) %in% aesthetics])
kept <- stats::ave(complete, data$group, FUN = keep_mid_true)
data <- data[kept, ]
if (!all(kept) && !params$na.rm) {
cli::cli_warn(paste0(
"Removed {sum(!kept)} row{?s} containing missing values or values ",
"outside the scale range ({.fn {snake_class(self)}})."
))
}
data
},
draw_panel = function(self, data, panel_params, coord, arrow = NULL,
lineend = "butt", linejoin = "round", linemitre = 10,
na.rm = FALSE) {
data <- check_linewidth(data, snake_class(self))
if (!anyDuplicated(data$group)) {
cli::cli_inform(c(
"{.fn {snake_class(self)}}: Each group consists of only one observation.",
i = "Do you need to adjust the {.field group} aesthetic?"
))
}
# must be sorted on group
data <- data[order(data$group), , drop = FALSE]
munched <- coord_munch(coord, data, panel_params)
# Silently drop lines with less than two points, preserving order
rows <- stats::ave(seq_len(nrow(munched)), munched$group, FUN = length)
munched <- munched[rows >= 2, ]
if (nrow(munched) < 2) return(zeroGrob())
# Work out whether we should use lines or segments
attr <- dapply(munched, "group", function(df) {
linetype <- unique0(df$linetype)
data_frame0(
solid = identical(linetype, 1) || identical(linetype, "solid"),
constant = nrow(unique0(df[, names(df) %in% c("alpha", "colour", "linewidth", "linetype")])) == 1,
.size = 1
)
})
solid_lines <- all(attr$solid)
constant <- all(attr$constant)
if (!solid_lines && !constant) {
cli::cli_abort("{.fn {snake_class(self)}} can't have varying {.field colour}, {.field linewidth}, and/or {.field alpha} along the line when {.field linetype} isn't solid.")
}
# Work out grouping variables for grobs
n <- nrow(munched)
group_diff <- munched$group[-1] != munched$group[-n]
start <- c(TRUE, group_diff)
end <- c(group_diff, TRUE)
if (!constant) {
arrow <- repair_segment_arrow(arrow, munched$group)
segmentsGrob(
munched$x[!end], munched$y[!end], munched$x[!start], munched$y[!start],
default.units = "native", arrow = arrow,
gp = gpar(
col = alpha(munched$colour, munched$alpha)[!end],
fill = alpha(munched$colour, munched$alpha)[!end],
lwd = munched$linewidth[!end] * .pt,
lty = munched$linetype[!end],
lineend = lineend,
linejoin = linejoin,
linemitre = linemitre
)
)
} else {
id <- match(munched$group, unique0(munched$group))
polylineGrob(
munched$x, munched$y, id = id,
default.units = "native", arrow = arrow,
gp = gpar(
col = alpha(munched$colour, munched$alpha)[start],
fill = alpha(munched$colour, munched$alpha)[start],
lwd = munched$linewidth[start] * .pt,
lty = munched$linetype[start],
lineend = lineend,
linejoin = linejoin,
linemitre = linemitre
)
)
}
},
draw_key = draw_key_path,
rename_size = TRUE
)
# Trim false values from left and right: keep all values from
# first TRUE to last TRUE
keep_mid_true <- function(x) {
first <- match(TRUE, x) - 1
if (is.na(first)) {
return(rep(FALSE, length(x)))
}
last <- length(x) - match(TRUE, rev(x)) + 1
c(
rep(FALSE, first),
rep(TRUE, last - first),
rep(FALSE, length(x) - last)
)
}
#' @export
#' @rdname geom_path
geom_line <- function(mapping = NULL, data = NULL, stat = "identity",
position = "identity", na.rm = FALSE, orientation = NA,
show.legend = NA, inherit.aes = TRUE, ...) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomLine,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list2(
na.rm = na.rm,
orientation = orientation,
...
)
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
#' @include geom-path.R
GeomLine <- ggproto("GeomLine", GeomPath,
setup_params = function(data, params) {
params$flipped_aes <- has_flipped_aes(data, params, ambiguous = TRUE)
params
},
extra_params = c("na.rm", "orientation"),
setup_data = function(data, params) {
data$flipped_aes <- params$flipped_aes
data <- flip_data(data, params$flipped_aes)
data <- data[order(data$PANEL, data$group, data$x), ]
flip_data(data, params$flipped_aes)
}
)
#' @param direction direction of stairs: 'vh' for vertical then horizontal,
#' 'hv' for horizontal then vertical, or 'mid' for step half-way between
#' adjacent x-values.
#' @export
#' @rdname geom_path
geom_step <- function(mapping = NULL, data = NULL, stat = "identity",
position = "identity", direction = "hv",
na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomStep,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list2(
direction = direction,
na.rm = na.rm,
...
)
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
#' @include geom-path.R
GeomStep <- ggproto("GeomStep", GeomPath,
draw_panel = function(data, panel_params, coord,
lineend = "butt", linejoin = "round", linemitre = 10,
direction = "hv") {
data <- dapply(data, "group", stairstep, direction = direction)
GeomPath$draw_panel(
data, panel_params, coord,
lineend = lineend, linejoin = linejoin, linemitre = linemitre
)
}
)
#' Calculate stairsteps for `geom_step()`
#' Used by `GeomStep()`
#'
#' @noRd
stairstep <- function(data, direction = "hv") {
direction <- arg_match0(direction, c("hv", "vh", "mid"))
data <- as.data.frame(data)[order(data$x), ]
n <- nrow(data)
if (n <= 1) {
# Need at least one observation
return(data[0, , drop = FALSE])
}
if (direction == "vh") {
xs <- rep(1:n, each = 2)[-2*n]
ys <- c(1, rep(2:n, each = 2))
} else if (direction == "hv") {
ys <- rep(1:n, each = 2)[-2*n]
xs <- c(1, rep(2:n, each = 2))
} else if (direction == "mid") {
xs <- rep(1:(n-1), each = 2)
ys <- rep(1:n, each = 2)
}
if (direction == "mid") {
gaps <- data$x[-1] - data$x[-n]
mid_x <- data$x[-n] + gaps/2 # map the mid-point between adjacent x-values
x <- c(data$x[1], mid_x[xs], data$x[n])
y <- c(data$y[ys])
data_attr <- data[c(1,xs,n), setdiff(names(data), c("x", "y"))]
} else {
x <- data$x[xs]
y <- data$y[ys]
data_attr <- data[xs, setdiff(names(data), c("x", "y"))]
}
data_frame0(x = x, y = y, data_attr)
}
repair_segment_arrow <- function(arrow, group) {
# Early exit if there is no arrow
if (is.null(arrow)) {
return(arrow)
}
# Get group parameters
rle <- vec_group_rle(group) # handles NAs better than base::rle()
n_groups <- length(rle)
rle_len <- field(rle, "length") - 1 # segments have 1 member less than lines
rle_end <- cumsum(rle_len)
rle_start <- rle_end - rle_len + 1
# Recycle ends and lengths
ends <- rep(rep(arrow$ends, length.out = n_groups), rle_len)
len <- rep(rep(arrow$length, length.out = n_groups), rle_len)
# Repair ends
# Convert 'both' ends to first/last in multi-member groups
is_both <- which(ends == 3)
ends[setdiff(intersect(rle_start, is_both), rle_end)] <- 1L
ends[setdiff(intersect(rle_end, is_both), rle_start)] <- 2L
arrow$ends <- ends
# Repair lengths
zero <- unit(0, "mm")
# Set length of first segment to zero when ends is 'last'
len[intersect(setdiff(rle_start, rle_end), which(ends == 2))] <- zero
# Set length of last segment to zero when ends is 'first'
len[intersect(setdiff(rle_end, rle_start), which(ends == 1))] <- zero
# Set length of middle pieces to zero
len[setdiff(seq_along(len), c(rle_start, rle_end))] <- zero
arrow$length <- len
return(arrow)
}
|