1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
#' Create a new ggplot
#'
#' `ggplot()` initializes a ggplot object. It can be used to
#' declare the input data frame for a graphic and to specify the
#' set of plot aesthetics intended to be common throughout all
#' subsequent layers unless specifically overridden.
#'
#' `ggplot()` is used to construct the initial plot object,
#' and is almost always followed by a plus sign (`+`) to add
#' components to the plot.
#'
#' There are three common patterns used to invoke `ggplot()`:
#'
#' * `ggplot(data = df, mapping = aes(x, y, other aesthetics))`
#' * `ggplot(data = df)`
#' * `ggplot()`
#'
#' The first pattern is recommended if all layers use the same
#' data and the same set of aesthetics, although this method
#' can also be used when adding a layer using data from another
#' data frame.
#'
#' The second pattern specifies the default data frame to use
#' for the plot, but no aesthetics are defined up front. This
#' is useful when one data frame is used predominantly for the
#' plot, but the aesthetics vary from one layer to another.
#'
#' The third pattern initializes a skeleton `ggplot` object, which
#' is fleshed out as layers are added. This is useful when
#' multiple data frames are used to produce different layers, as
#' is often the case in complex graphics.
#'
#' The `data =` and `mapping =` specifications in the arguments are optional
#' (and are often omitted in practice), so long as the data and the mapping
#' values are passed into the function in the right order. In the examples
#' below, however, they are left in place for clarity.
#'
#' @param data Default dataset to use for plot. If not already a data.frame,
#' will be converted to one by [fortify()]. If not specified,
#' must be supplied in each layer added to the plot.
#' @param mapping Default list of aesthetic mappings to use for plot.
#' If not specified, must be supplied in each layer added to the plot.
#' @param ... Other arguments passed on to methods. Not currently used.
#' @param environment `r lifecycle::badge("deprecated")` Used prior to tidy
#' evaluation.
#' @export
#' @seealso
#' The `r link_book("first steps chapter", "getting-started")`
#' @examples
#' # Create a data frame with some sample data, then create a data frame
#' # containing the mean value for each group in the sample data.
#' set.seed(1)
#'
#' sample_df <- data.frame(
#' group = factor(rep(letters[1:3], each = 10)),
#' value = rnorm(30)
#' )
#'
#' group_means_df <- setNames(
#' aggregate(value ~ group, sample_df, mean),
#' c("group", "group_mean")
#' )
#'
#' # The following three code blocks create the same graphic, each using one
#' # of the three patterns specified above. In each graphic, the sample data
#' # are plotted in the first layer and the group means data frame is used to
#' # plot larger red points on top of the sample data in the second layer.
#'
#' # Pattern 1
#' # Both the `data` and `mapping` arguments are passed into the `ggplot()`
#' # call. Those arguments are omitted in the first `geom_point()` layer
#' # because they get passed along from the `ggplot()` call. Note that the
#' # second `geom_point()` layer re-uses the `x = group` aesthetic through
#' # that mechanism but overrides the y-position aesthetic.
#' ggplot(data = sample_df, mapping = aes(x = group, y = value)) +
#' geom_point() +
#' geom_point(
#' mapping = aes(y = group_mean), data = group_means_df,
#' colour = 'red', size = 3
#' )
#'
#' # Pattern 2
#' # Same plot as above, passing only the `data` argument into the `ggplot()`
#' # call. The `mapping` arguments are now required in each `geom_point()`
#' # layer because there is no `mapping` argument passed along from the
#' # `ggplot()` call.
#' ggplot(data = sample_df) +
#' geom_point(mapping = aes(x = group, y = value)) +
#' geom_point(
#' mapping = aes(x = group, y = group_mean), data = group_means_df,
#' colour = 'red', size = 3
#' )
#'
#' # Pattern 3
#' # Same plot as above, passing neither the `data` or `mapping` arguments
#' # into the `ggplot()` call. Both those arguments are now required in
#' # each `geom_point()` layer. This pattern can be particularly useful when
#' # creating more complex graphics with many layers using data from multiple
#' # data frames.
#' ggplot() +
#' geom_point(mapping = aes(x = group, y = value), data = sample_df) +
#' geom_point(
#' mapping = aes(x = group, y = group_mean), data = group_means_df,
#' colour = 'red', size = 3
#' )
ggplot <- function(data = NULL, mapping = aes(), ...,
environment = parent.frame()) {
UseMethod("ggplot")
}
#' @export
ggplot.default <- function(data = NULL, mapping = aes(), ...,
environment = parent.frame()) {
if (!missing(mapping) && !inherits(mapping, "uneval")) {
cli::cli_abort(c(
"{.arg mapping} must be created with {.fn aes}.",
"x" = "You've supplied {.obj_type_friendly {mapping}}."
))
}
data <- fortify(data, ...)
p <- structure(list(
data = data,
layers = list(),
scales = scales_list(),
guides = guides_list(),
mapping = mapping,
theme = list(),
coordinates = coord_cartesian(default = TRUE),
facet = facet_null(),
plot_env = environment,
layout = ggproto(NULL, Layout)
), class = c("gg", "ggplot"))
p$labels <- make_labels(mapping)
set_last_plot(p)
p
}
#' @export
ggplot.function <- function(data = NULL, mapping = aes(), ...,
environment = parent.frame()) {
# Added to avoid functions end in ggplot.default
cli::cli_abort(c(
"{.arg data} cannot be a function.",
"i" = "Have you misspelled the {.arg data} argument in {.fn ggplot}"
))
}
plot_clone <- function(plot) {
p <- plot
p$scales <- plot$scales$clone()
p
}
#' Reports whether x is a ggplot object
#' @param x An object to test
#' @keywords internal
#' @export
is.ggplot <- function(x) inherits(x, "ggplot")
#' Explicitly draw plot
#'
#' Generally, you do not need to print or plot a ggplot2 plot explicitly: the
#' default top-level print method will do it for you. You will, however, need
#' to call `print()` explicitly if you want to draw a plot inside a
#' function or for loop.
#'
#' @param x plot to display
#' @param newpage draw new (empty) page first?
#' @param vp viewport to draw plot in
#' @param ... other arguments not used by this method
#' @keywords hplot
#' @return Invisibly returns the original plot.
#' @export
#' @method print ggplot
#' @examples
#' colours <- list(~class, ~drv, ~fl)
#'
#' # Doesn't seem to do anything!
#' for (colour in colours) {
#' ggplot(mpg, aes_(~ displ, ~ hwy, colour = colour)) +
#' geom_point()
#' }
#'
#' # Works when we explicitly print the plots
#' for (colour in colours) {
#' print(ggplot(mpg, aes_(~ displ, ~ hwy, colour = colour)) +
#' geom_point())
#' }
print.ggplot <- function(x, newpage = is.null(vp), vp = NULL, ...) {
set_last_plot(x)
if (newpage) grid.newpage()
# Record dependency on 'ggplot2' on the display list
# (AFTER grid.newpage())
grDevices::recordGraphics(
requireNamespace("ggplot2", quietly = TRUE),
list(),
getNamespace("ggplot2")
)
data <- ggplot_build(x)
gtable <- ggplot_gtable(data)
if (is.null(vp)) {
grid.draw(gtable)
} else {
if (is.character(vp)) seekViewport(vp) else pushViewport(vp)
grid.draw(gtable)
upViewport()
}
if (isTRUE(getOption("BrailleR.VI")) && rlang::is_installed("BrailleR")) {
print(asNamespace("BrailleR")$VI(x))
}
invisible(x)
}
#' @rdname print.ggplot
#' @method plot ggplot
#' @export
plot.ggplot <- print.ggplot
|