1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
#' Dodge overlapping objects side-to-side
#'
#' Dodging preserves the vertical position of an geom while adjusting the
#' horizontal position. `position_dodge()` requires the grouping variable to be
#' be specified in the global or `geom_*` layer. Unlike `position_dodge()`,
#' `position_dodge2()` works without a grouping variable in a layer.
#' `position_dodge2()` works with bars and rectangles, but is
#' particularly useful for arranging box plots, which
#' can have variable widths.
#'
#' @param width Dodging width, when different to the width of the individual
#' elements. This is useful when you want to align narrow geoms with wider
#' geoms. See the examples.
#' @param preserve Should dodging preserve the `"total"` width of all elements
#' at a position, or the width of a `"single"` element?
#' @family position adjustments
#' @export
#' @examples
#' ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +
#' geom_bar(position = "dodge2")
#'
#' # By default, dodging with `position_dodge2()` preserves the total width of
#' # the elements. You can choose to preserve the width of each element with:
#' ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +
#' geom_bar(position = position_dodge2(preserve = "single"))
#'
#' \donttest{
#' ggplot(diamonds, aes(price, fill = cut)) +
#' geom_histogram(position="dodge2")
#' # see ?geom_bar for more examples
#'
#' # In this case a frequency polygon is probably a better choice
#' ggplot(diamonds, aes(price, colour = cut)) +
#' geom_freqpoly()
#' }
#'
#' # Dodging with various widths -------------------------------------
#' # To dodge items with different widths, you need to be explicit
#' df <- data.frame(
#' x = c("a","a","b","b"),
#' y = 2:5,
#' g = rep(1:2, 2)
#' )
#' p <- ggplot(df, aes(x, y, group = g)) +
#' geom_col(position = "dodge", fill = "grey50", colour = "black")
#' p
#'
#' # A line range has no width:
#' p + geom_linerange(aes(ymin = y - 1, ymax = y + 1), position = "dodge")
#'
#' # So you must explicitly specify the width
#' p + geom_linerange(
#' aes(ymin = y - 1, ymax = y + 1),
#' position = position_dodge(width = 0.9)
#' )
#'
#' # The same principle applies to error bars, which are usually
#' # narrower than the bars
#' p + geom_errorbar(
#' aes(ymin = y - 1, ymax = y + 1),
#' width = 0.2,
#' position = "dodge"
#' )
#' p + geom_errorbar(
#' aes(ymin = y - 1, ymax = y + 1),
#' width = 0.2,
#' position = position_dodge(width = 0.9)
#' )
#'
#' # Box plots use position_dodge2 by default, and bars can use it too
#' ggplot(mpg, aes(factor(year), displ)) +
#' geom_boxplot(aes(colour = hwy < 30))
#'
#' ggplot(mpg, aes(factor(year), displ)) +
#' geom_boxplot(aes(colour = hwy < 30), varwidth = TRUE)
#'
#' ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +
#' geom_bar(position = position_dodge2(preserve = "single"))
#'
#' ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +
#' geom_bar(position = position_dodge2(preserve = "total"))
position_dodge <- function(width = NULL, preserve = "total") {
ggproto(NULL, PositionDodge,
width = width,
preserve = arg_match0(preserve, c("total", "single"))
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
PositionDodge <- ggproto("PositionDodge", Position,
width = NULL,
preserve = "total",
setup_params = function(self, data) {
flipped_aes <- has_flipped_aes(data)
data <- flip_data(data, flipped_aes)
if (is.null(data$xmin) && is.null(data$xmax) && is.null(self$width)) {
cli::cli_warn(c(
"Width not defined",
"i" = "Set with {.code position_dodge(width = ...)}"
))
}
if (identical(self$preserve, "total")) {
n <- NULL
} else {
panels <- unname(split(data, data$PANEL))
ns <- vapply(panels, function(panel) max(table(panel$xmin)), double(1))
n <- max(ns)
}
list(
width = self$width,
n = n,
flipped_aes = flipped_aes
)
},
setup_data = function(self, data, params) {
data <- flip_data(data, params$flipped_aes)
if (!"x" %in% names(data) && all(c("xmin", "xmax") %in% names(data))) {
data$x <- (data$xmin + data$xmax) / 2
}
flip_data(data, params$flipped_aes)
},
compute_panel = function(data, params, scales) {
data <- flip_data(data, params$flipped_aes)
collided <- collide(
data,
params$width,
name = "position_dodge",
strategy = pos_dodge,
n = params$n,
check.width = FALSE
)
flip_data(collided, params$flipped_aes)
}
)
# Dodge overlapping interval.
# Assumes that each set has the same horizontal position.
pos_dodge <- function(df, width, n = NULL) {
if (is.null(n)) {
n <- vec_unique_count(df$group)
}
if (n == 1)
return(df)
if (!all(c("xmin", "xmax") %in% names(df))) {
df$xmin <- df$x
df$xmax <- df$x
}
d_width <- max(df$xmax - df$xmin)
# Have a new group index from 1 to number of groups.
# This might be needed if the group numbers in this set don't include all of 1:n
groupidx <- match(df$group, sort(unique0(df$group)))
# Find the center for each group, then use that to calculate xmin and xmax
df$x <- df$x + width * ((groupidx - 0.5) / n - .5)
df$xmin <- df$x - d_width / n / 2
df$xmax <- df$x + d_width / n / 2
df
}
|