File: scale-discrete-.R

package info (click to toggle)
r-cran-ggplot2 3.5.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 9,944 kB
  • sloc: sh: 15; makefile: 5
file content (227 lines) | stat: -rw-r--r-- 7,503 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#' Position scales for discrete data
#'
#' `scale_x_discrete()` and `scale_y_discrete()` are used to set the values for
#' discrete x and y scale aesthetics. For simple manipulation of scale labels
#' and limits, you may wish to use [labs()] and [lims()] instead.
#'
#' You can use continuous positions even with a discrete position scale -
#' this allows you (e.g.) to place labels between bars in a bar chart.
#' Continuous positions are numeric values starting at one for the first
#' level, and increasing by one for each level (i.e. the labels are placed
#' at integer positions).  This is what allows jittering to work.
#'
#' @inheritDotParams discrete_scale -scale_name
#' @inheritParams discrete_scale
#' @rdname scale_discrete
#' @family position scales
#' @seealso
#' The [position documentation][aes_position].
#'
#' The `r link_book("discrete position scales section", "scales-position#sec-discrete-position")`
#' @export
#' @examples
#' ggplot(diamonds, aes(cut)) + geom_bar()
#'
#' \donttest{
#' # The discrete position scale is added automatically whenever you
#' # have a discrete position.
#'
#' (d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) +
#'       geom_jitter())
#'
#' d + scale_x_discrete("Cut")
#' d +
#'   scale_x_discrete(
#'     "Cut",
#'     labels = c(
#'       "Fair" = "F",
#'       "Good" = "G",
#'       "Very Good" = "VG",
#'       "Perfect" = "P",
#'       "Ideal" = "I"
#'     )
#'   )
#'
#' # Use limits to adjust the which levels (and in what order)
#' # are displayed
#' d + scale_x_discrete(limits = c("Fair","Ideal"))
#'
#' # you can also use the short hand functions xlim and ylim
#' d + xlim("Fair","Ideal", "Good")
#' d + ylim("I1", "IF")
#'
#' # See ?reorder to reorder based on the values of another variable
#' ggplot(mpg, aes(manufacturer, cty)) +
#'   geom_point()
#' ggplot(mpg, aes(reorder(manufacturer, cty), cty)) +
#'   geom_point()
#' ggplot(mpg, aes(reorder(manufacturer, displ), cty)) +
#'   geom_point()
#'
#' # Use abbreviate as a formatter to reduce long names
#' ggplot(mpg, aes(reorder(manufacturer, displ), cty)) +
#'   geom_point() +
#'   scale_x_discrete(labels = abbreviate)
#' }
scale_x_discrete <- function(name = waiver(), ..., expand = waiver(),
                             guide = waiver(), position = "bottom") {
  sc <- discrete_scale(
    aesthetics = c("x", "xmin", "xmax", "xend"), name = name,
    palette = identity, ...,
    expand = expand, guide = guide, position = position,
    super = ScaleDiscretePosition
  )

  sc$range_c <- ContinuousRange$new()
  sc
}
#' @rdname scale_discrete
#' @export
scale_y_discrete <- function(name = waiver(), ..., expand = waiver(),
                             guide = waiver(), position = "left") {
  sc <- discrete_scale(
    aesthetics = c("y", "ymin", "ymax", "yend"), name = name,
    palette = identity, ...,
    expand = expand, guide = guide, position = position,
    super = ScaleDiscretePosition
  )

  sc$range_c <- ContinuousRange$new()
  sc
}

# The discrete position scale maintains two separate ranges - one for
# continuous data and one for discrete data.  This complicates training and
# mapping, but makes it possible to place objects at non-integer positions,
# as is necessary for jittering etc.

#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
ScaleDiscretePosition <- ggproto("ScaleDiscretePosition", ScaleDiscrete,
  train = function(self, x) {
    if (is.discrete(x)) {
      self$range$train(x, drop = self$drop, na.rm = !self$na.translate)
    } else {
      self$range_c$train(x)
    }
  },

  get_limits = function(self) {
    # if scale contains no information, return the default limit
    if (self$is_empty()) {
      return(c(0, 1))
    }

    # if self$limits is not NULL and is a function, apply it to range
    if (is.function(self$limits)){
      return(self$limits(self$range$range))
    }

    # self$range$range can be NULL because non-discrete values use self$range_c
    self$limits %||% self$range$range %||% integer()
  },

  is_empty = function(self) {
    is.null(self$range$range) && is.null(self$limits) && is.null(self$range_c$range)
  },

  reset = function(self) {
    # Can't reset discrete position scale because no way to recover values
    self$range_c$reset()
  },

  map = function(self, x, limits = self$get_limits()) {
    if (is.discrete(x)) {
      x <- seq_along(limits)[match(as.character(x), limits)]
    }
    mapped_discrete(x)
  },

  rescale = function(self, x, limits = self$get_limits(), range = self$dimension(limits = limits)) {
    rescale(self$map(x, limits = limits), from = range)
  },

  dimension = function(self, expand = expansion(0, 0), limits = self$get_limits()) {
    expand_limits_scale(self, expand, limits)
  },

  clone = function(self) {
    new <- ggproto(NULL, self)
    new$range <- DiscreteRange$new()
    new$range_c <- ContinuousRange$new()
    new
  }
)

# Can't use vctrs - vctrs is too restrictive for mapped_discrete
new_mapped_discrete <- function(x = double()) {
  # Check the storage mode is double but don't error on additional attributes
  vec_assert(as.vector(x), double())
  class(x) <- c("mapped_discrete", "numeric")
  x
}
mapped_discrete <- function(x = double()) {
  if (is.null(x)) return(NULL)
  new_mapped_discrete(vec_cast(x, double()))
}
is_mapped_discrete <- function(x) inherits(x, "mapped_discrete")
#' @export
c.mapped_discrete <- function(..., recursive = FALSE) {
  mapped_discrete(unlist(lapply(list(...), unclass)))
}
#' @export
`[.mapped_discrete` <- function(x, ..., drop = TRUE) {
  mapped_discrete(NextMethod())
}
#' @export
`[<-.mapped_discrete` <- function(x, ..., value) {
  if (length(value) == 0) {
    return(x)
  }
  value <- as.numeric(unclass(value))
  mapped_discrete(NextMethod())
}
#' @export
as.data.frame.mapped_discrete <- function (x, ...) {
  as.data.frame.vector(x = unclass(x), ...)
}

#' @export
vec_ptype2.mapped_discrete.mapped_discrete <- function(x, y, ...) new_mapped_discrete()
#' @export
vec_ptype2.mapped_discrete.double <- function(x, y, ...) new_mapped_discrete()
#' @export
vec_ptype2.double.mapped_discrete <- function(x, y, ...) new_mapped_discrete()
#' @export
vec_ptype2.mapped_discrete.integer <- function(x, y, ...) new_mapped_discrete()
#' @export
vec_ptype2.integer.mapped_discrete <- function(x, y, ...) new_mapped_discrete()
#' @export
vec_ptype2.mapped_discrete.character <- function(x, y, ...) character()
#' @export
vec_ptype2.character.mapped_discrete <- function(x, y, ...) character()
#' @export
vec_ptype2.mapped_discrete.factor <- function(x, y, ...) new_mapped_discrete()
#' @export
vec_ptype2.factor.mapped_discrete <- function(x, y, ...) new_mapped_discrete()
#' @export
vec_cast.mapped_discrete.mapped_discrete <- function(x, to, ...) x
#' @export
vec_cast.mapped_discrete.integer <- function(x, to, ...) mapped_discrete(x)
#' @export
vec_cast.integer.mapped_discrete <- function(x, to, ...) as.integer(as.vector(x))
#' @export
vec_cast.mapped_discrete.double <- function(x, to, ...) new_mapped_discrete(x)
#' @export
vec_cast.double.mapped_discrete <- function(x, to, ...) as.vector(x)
#' @export
vec_cast.character.mapped_discrete <- function(x, to, ...) as.character(as.vector(x))
#' @export
vec_cast.mapped_discrete.factor <- function(x, to, ...) mapped_discrete(as.vector(unclass(x)))
#' @export
vec_cast.factor.mapped_discrete <- function(x, to, ...) factor(as.vector(x), ...)
#' @export
vec_cast.mapped_discrete.logical <- function(x, to, ...) mapped_discrete(x)