1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
#' @inheritParams stat_identity
#' @inheritParams geom_contour
#' @export
#' @eval rd_aesthetics("stat", "contour")
#' @eval rd_aesthetics("stat", "contour_filled")
#' @eval rd_computed_vars(
#' .details = "The computed variables differ somewhat for contour lines
#' (computed by `stat_contour()`) and contour bands (filled contours,
#' computed by `stat_contour_filled()`). The variables `nlevel` and `piece`
#' are available for both, whereas `level_low`, `level_high`, and `level_mid`
#' are only available for bands. The variable `level` is a numeric or a factor
#' depending on whether lines or bands are calculated.",
#' level = "Height of contour. For contour lines, this is a numeric vector
#' that represents bin boundaries. For contour bands, this is an ordered
#' factor that represents bin ranges.",
#' "level_low,level_high,level_mid" = "(contour bands only) Lower and upper
#' bin boundaries for each band, as well as the mid point between boundaries.",
#' nlevel = "Height of contour, scaled to a maximum of 1.",
#' piece = "Contour piece (an integer)."
#' )
#'
#' @section Dropped variables:
#' \describe{
#' \item{`z`}{After contouring, the z values of individual data points are no longer available.}
#' }
#'
#'
#' @rdname geom_contour
stat_contour <- function(mapping = NULL, data = NULL,
geom = "contour", position = "identity",
...,
bins = NULL,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = StatContour,
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list2(
bins = bins,
binwidth = binwidth,
breaks = breaks,
na.rm = na.rm,
...
)
)
}
#' @rdname geom_contour
#' @export
stat_contour_filled <- function(mapping = NULL, data = NULL,
geom = "contour_filled", position = "identity",
...,
bins = NULL,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = StatContourFilled,
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list2(
bins = bins,
binwidth = binwidth,
breaks = breaks,
na.rm = na.rm,
...
)
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
StatContour <- ggproto("StatContour", Stat,
required_aes = c("x", "y", "z"),
default_aes = aes(order = after_stat(level)),
# z and weight get dropped during statistical transformation
dropped_aes = c("z", "weight"),
setup_params = function(data, params) {
params$z.range <- range(data$z, na.rm = TRUE, finite = TRUE)
params
},
setup_data = function(data, params) {
contour_deduplicate(data)
},
compute_group = function(data, scales, z.range, bins = NULL, binwidth = NULL,
breaks = NULL, na.rm = FALSE) {
breaks <- contour_breaks(z.range, bins, binwidth, breaks)
isolines <- withr::with_options(list(OutDec = "."), xyz_to_isolines(data, breaks))
path_df <- iso_to_path(isolines, data$group[1])
path_df$level <- as.numeric(path_df$level)
path_df$nlevel <- rescale_max(path_df$level)
path_df
}
)
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
StatContourFilled <- ggproto("StatContourFilled", Stat,
required_aes = c("x", "y", "z"),
default_aes = aes(order = after_stat(level), fill = after_stat(level)),
# z and weight get dropped during statistical transformation
dropped_aes = c("z", "weight"),
setup_params = function(data, params) {
params$z.range <- range(data$z, na.rm = TRUE, finite = TRUE)
params
},
setup_data = function(data, params) {
contour_deduplicate(data)
},
compute_group = function(data, scales, z.range, bins = NULL, binwidth = NULL, breaks = NULL, na.rm = FALSE) {
breaks <- contour_breaks(z.range, bins, binwidth, breaks)
isobands <- withr::with_options(list(OutDec = "."), xyz_to_isobands(data, breaks))
names(isobands) <- pretty_isoband_levels(names(isobands))
path_df <- iso_to_polygon(isobands, data$group[1])
path_df$level <- ordered(path_df$level, levels = names(isobands))
path_df$level_low <- breaks[as.numeric(path_df$level)]
path_df$level_high <- breaks[as.numeric(path_df$level) + 1]
path_df$level_mid <- 0.5*(path_df$level_low + path_df$level_high)
path_df$nlevel <- rescale_max(path_df$level_high)
path_df
}
)
#' Calculate the breaks used for contouring
#'
#' @inheritParams geom_contour
#' @param z_range Range of values within which breaks should be calculated
#'
#' @return A vector of breaks
#' @noRd
#'
contour_breaks <- function(z_range, bins = NULL, binwidth = NULL, breaks = NULL) {
breaks <- allow_lambda(breaks)
if (is.numeric(breaks)) {
return(breaks)
}
breaks_fun <- fullseq
if (is.function(breaks)) {
breaks_fun <- breaks
} else if (is.null(bins) && is.null(binwidth)) {
# If no parameters set, use pretty bins
breaks <- pretty(z_range, 10)
return(breaks)
}
# If provided, use bins to calculate binwidth
if (!is.null(bins)) {
# round lower limit down and upper limit up to make sure
# we generate bins that span the data range nicely
accuracy <- signif(diff(z_range), 1)/10
z_range[1] <- floor(z_range[1]/accuracy)*accuracy
z_range[2] <- ceiling(z_range[2]/accuracy)*accuracy
if (bins == 1) {
return(z_range)
}
binwidth <- diff(z_range) / (bins - 1)
breaks <- breaks_fun(z_range, binwidth)
# Sometimes the above sequence yields one bin too few.
# If this happens, try again.
if (length(breaks) < bins + 1) {
binwidth <- diff(z_range) / bins
breaks <- breaks_fun(z_range, binwidth)
}
return(breaks)
}
# if we haven't returned yet, compute breaks from binwidth
breaks_fun(z_range, binwidth %||% (diff(z_range) / 10))
}
#' Compute isoband objects
#'
#' @param data A data frame with columns `x`, `y`, and `z`.
#' @param breaks A vector of breaks. These are the values for
#' which contour lines will be computed.
#'
#' @return An S3 "iso" object, which is a `list()` of `list(x, y, id)`s.
#' @noRd
#'
xyz_to_isolines <- function(data, breaks) {
isoband::isolines(
x = sort(unique0(data$x)),
y = sort(unique0(data$y)),
z = isoband_z_matrix(data),
levels = breaks
)
}
xyz_to_isobands <- function(data, breaks) {
isoband::isobands(
x = sort(unique0(data$x)),
y = sort(unique0(data$y)),
z = isoband_z_matrix(data),
levels_low = breaks[-length(breaks)],
levels_high = breaks[-1]
)
}
#' Compute input matrix for isoband functions
#'
#' Note that [grDevices::contourLines()] needs transposed
#' output to the matrix returned by this function.
#'
#' @param data A data frame with columns `x`, `y`, and `z`.
#'
#' @return A [matrix()]
#' @noRd
#'
isoband_z_matrix <- function(data) {
# Convert vector of data to raster
x_pos <- as.integer(factor(data$x, levels = sort(unique0(data$x))))
y_pos <- as.integer(factor(data$y, levels = sort(unique0(data$y))))
nrow <- max(y_pos)
ncol <- max(x_pos)
raster <- matrix(NA_real_, nrow = nrow, ncol = ncol)
raster[cbind(y_pos, x_pos)] <- data$z
raster
}
#' Convert the output of isolines functions
#'
#' @param iso the output of [isoband::isolines()]
#' @param group the name of the group
#'
#' @return A data frame that can be passed to [geom_path()].
#' @noRd
#'
iso_to_path <- function(iso, group = 1) {
lengths <- vapply(iso, function(x) length(x$x), integer(1))
if (all(lengths == 0)) {
cli::cli_warn("{.fn stat_contour}: Zero contours were generated")
return(data_frame0())
}
levels <- names(iso)
xs <- unlist(lapply(iso, "[[", "x"), use.names = FALSE)
ys <- unlist(lapply(iso, "[[", "y"), use.names = FALSE)
ids <- unlist(lapply(iso, "[[", "id"), use.names = FALSE)
item_id <- rep(seq_along(iso), lengths)
# Add leading zeros so that groups can be properly sorted
groups <- paste(group, sprintf("%03d", item_id), sprintf("%03d", ids), sep = "-")
groups <- factor(groups)
data_frame0(
level = rep(levels, lengths),
x = xs,
y = ys,
piece = as.integer(groups),
group = groups,
.size = length(xs)
)
}
#' Convert the output of isoband functions
#'
#' @param iso the output of [isoband::isobands()]
#' @param group the name of the group
#'
#' @return A data frame that can be passed to [geom_polygon()].
#' @noRd
#'
iso_to_polygon <- function(iso, group = 1) {
lengths <- vapply(iso, function(x) length(x$x), integer(1))
if (all(lengths == 0)) {
cli::cli_warn("{.fn stat_contour}: Zero contours were generated")
return(data_frame0())
}
levels <- names(iso)
xs <- unlist(lapply(iso, "[[", "x"), use.names = FALSE)
ys <- unlist(lapply(iso, "[[", "y"), use.names = FALSE)
ids <- unlist(lapply(iso, "[[", "id"), use.names = FALSE)
item_id <- rep(seq_along(iso), lengths)
# Add leading zeros so that groups can be properly sorted
groups <- paste(group, sprintf("%03d", item_id), sep = "-")
groups <- factor(groups)
data_frame0(
level = rep(levels, lengths),
x = xs,
y = ys,
piece = as.integer(groups),
group = groups,
subgroup = ids,
.size = length(xs)
)
}
#' Pretty isoband level names
#'
#' @param isoband_levels `names()` of an [isoband::isobands()] object.
#'
#' @return A vector of labels like those used in
#' [cut()] and [cut_inverval()].
#' @noRd
#'
pretty_isoband_levels <- function(isoband_levels, dig.lab = 3) {
interval_low <- as.numeric(gsub(":.*$", "", isoband_levels))
interval_high <- as.numeric(gsub("^[^:]*:", "", isoband_levels))
breaks <- unique(c(interval_low, interval_high))
while(anyDuplicated(format(breaks, digits = dig.lab, trim = TRUE))) {
dig.lab <- dig.lab + 1
}
label_low <- format(interval_low, digits = dig.lab, trim = TRUE)
label_high <- format(interval_high, digits = dig.lab, trim = TRUE)
# from the isoband::isobands() docs:
# the intervals specifying isobands are closed at their lower boundary
# and open at their upper boundary
sprintf("(%s, %s]", label_low, label_high)
}
#' De-duplicate data for contours
#'
#' Gives a warning if data has duplicates and throws out duplicated rows.
#'
#' @param data A `data.frame`
#' @param check Column names to check for duplicates
#'
#' @return A de-duplicated `data.frame`
#' @noRd
contour_deduplicate <- function(data, check = c("x", "y", "group", "PANEL")) {
check <- intersect(check, names(data))
if (length(check) == 0) {
return(data)
}
if (vec_duplicate_any(data[, check, drop = FALSE])) {
# We use fromLast here to be consistent with `isoband_z_matrix()` behaviour
dups <- duplicated(data[, check, drop = FALSE], fromLast = TRUE)
data <- data[!dups, , drop = FALSE]
cli::cli_warn(c(
"Contour data has duplicated {.field x}, {.field y} coordinates.",
i = "{sum(dups)} duplicated row{?s} have been dropped."
))
}
data
}
|