File: stat-smooth-methods.R

package info (click to toggle)
r-cran-ggplot2 3.5.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 9,944 kB
  • sloc: sh: 15; makefile: 5
file content (89 lines) | stat: -rw-r--r-- 2,165 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Prediction data frame
# Get predictions with standard errors into data frame
#
# @keyword internal
# @alias predictdf.default
# @alias predictdf.glm
# @alias predictdf.loess
# @alias predictdf.locfit
predictdf <- function(model, xseq, se, level) UseMethod("predictdf")

#' @export
predictdf.default <- function(model, xseq, se, level) {
  pred <- stats::predict(
    model,
    newdata = data_frame0(x = xseq),
    se.fit = se,
    level = level,
    interval = if (se) "confidence" else "none"
  )

  if (se) {
    fit <- as.data.frame(pred$fit)
    names(fit) <- c("y", "ymin", "ymax")
    base::data.frame(x = xseq, fit, se = pred$se.fit)
  } else {
    base::data.frame(x = xseq, y = as.vector(pred))
  }
}

#' @export
predictdf.glm <- function(model, xseq, se, level) {
  pred <- stats::predict(
    model,
    newdata = data_frame0(x = xseq),
    se.fit = se,
    type = "link"
  )

  if (se) {
    std <- stats::qnorm(level / 2 + 0.5)
    base::data.frame(
      x = xseq,
      y = model$family$linkinv(as.vector(pred$fit)),
      ymin = model$family$linkinv(as.vector(pred$fit - std * pred$se.fit)),
      ymax = model$family$linkinv(as.vector(pred$fit + std * pred$se.fit)),
      se = as.vector(pred$se.fit)
    )
  } else {
    base::data.frame(x = xseq, y = model$family$linkinv(as.vector(pred)))
  }
}

#' @export
predictdf.loess <- function(model, xseq, se, level) {
  pred <- stats::predict(
    model,
    newdata = data_frame0(x = xseq),
    se = se
  )

  if (se) {
    y <- pred$fit
    ci <- pred$se.fit * stats::qt(level / 2 + .5, pred$df)
    ymin <- y - ci
    ymax <- y + ci
    base::data.frame(x = xseq, y, ymin, ymax, se = pred$se.fit)
  } else {
    base::data.frame(x = xseq, y = as.vector(pred))
  }
}

#' @export
predictdf.locfit <- function(model, xseq, se, level) {
  pred <- stats::predict(
    model,
    newdata = data_frame0(x = xseq),
    se.fit = se
  )

  if (se) {
    y <- pred$fit
    ci <- pred$se.fit * stats::qt(level / 2 + .5, model$dp["df2"])
    ymin <- y - ci
    ymax <- y + ci
    base::data.frame(x = xseq, y, ymin, ymax, se = pred$se.fit)
  } else {
    base::data.frame(x = xseq, y = as.vector(pred))
  }
}