1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
#' @param method Smoothing method (function) to use, accepts either
#' `NULL` or a character vector, e.g. `"lm"`, `"glm"`, `"gam"`, `"loess"`
#' or a function, e.g. `MASS::rlm` or `mgcv::gam`, `stats::lm`, or `stats::loess`.
#' `"auto"` is also accepted for backwards compatibility. It is equivalent to
#' `NULL`.
#'
#' For `method = NULL` the smoothing method is chosen based on the
#' size of the largest group (across all panels). [stats::loess()] is
#' used for less than 1,000 observations; otherwise [mgcv::gam()] is
#' used with `formula = y ~ s(x, bs = "cs")` with `method = "REML"`. Somewhat anecdotally,
#' `loess` gives a better appearance, but is \eqn{O(N^{2})}{O(N^2)} in memory,
#' so does not work for larger datasets.
#'
#' If you have fewer than 1,000 observations but want to use the same `gam()`
#' model that `method = NULL` would use, then set
#' `method = "gam", formula = y ~ s(x, bs = "cs")`.
#' @param formula Formula to use in smoothing function, eg. `y ~ x`,
#' `y ~ poly(x, 2)`, `y ~ log(x)`. `NULL` by default, in which case
#' `method = NULL` implies `formula = y ~ x` when there are fewer than 1,000
#' observations and `formula = y ~ s(x, bs = "cs")` otherwise.
#' @param se Display confidence interval around smooth? (`TRUE` by default, see
#' `level` to control.)
#' @param fullrange If `TRUE`, the smoothing line gets expanded to the range of the plot,
#' potentially beyond the data. This does not extend the line into any additional padding
#' created by `expansion`.
#' @param xseq A numeric vector of values at which the smoother is evaluated.
#' When `NULL` (default), `xseq` is internally evaluated as a sequence of `n`
#' equally spaced points for continuous data.
#' @param level Level of confidence interval to use (0.95 by default).
#' @param span Controls the amount of smoothing for the default loess smoother.
#' Smaller numbers produce wigglier lines, larger numbers produce smoother
#' lines. Only used with loess, i.e. when `method = "loess"`,
#' or when `method = NULL` (the default) and there are fewer than 1,000
#' observations.
#' @param n Number of points at which to evaluate smoother.
#' @param method.args List of additional arguments passed on to the modelling
#' function defined by `method`.
#'
#' @eval rd_computed_vars(
#' .details = "`stat_smooth()` provides the following variables, some of
#' which depend on the orientation:",
#' "y|x" = "Predicted value.",
#' "ymin|xmin" = "Lower pointwise confidence interval around the mean.",
#' "ymax|xmax" = "Upper pointwise confidence interval around the mean.",
#' "se" = "Standard error."
#' )
#' @export
#' @rdname geom_smooth
stat_smooth <- function(mapping = NULL, data = NULL,
geom = "smooth", position = "identity",
...,
method = NULL,
formula = NULL,
se = TRUE,
n = 80,
span = 0.75,
fullrange = FALSE,
xseq = NULL,
level = 0.95,
method.args = list(),
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = StatSmooth,
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list2(
method = method,
formula = formula,
se = se,
n = n,
fullrange = fullrange,
level = level,
na.rm = na.rm,
orientation = orientation,
method.args = method.args,
span = span,
xseq = xseq,
...
)
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
StatSmooth <- ggproto("StatSmooth", Stat,
setup_params = function(data, params) {
params$flipped_aes <- has_flipped_aes(data, params, ambiguous = TRUE)
msg <- character()
if (is.null(params$method) || identical(params$method, "auto")) {
# Use loess for small datasets, gam with a cubic regression basis for
# larger. Based on size of the _largest_ group to avoid bad memory
# behaviour of loess
max_group <- max(table(interaction(data$group, data$PANEL, drop = TRUE)))
if (max_group < 1000) {
params$method <- "loess"
} else {
params$method <- "gam"
}
msg <- c(msg, paste0("method = '", params$method, "'"))
}
if (is.null(params$formula)) {
if (identical(params$method, "gam")) {
params$formula <- y ~ s(x, bs = "cs")
} else {
params$formula <- y ~ x
}
msg <- c(msg, paste0("formula = '", deparse(params$formula), "'"))
}
if (identical(params$method, "gam")) {
params$method <- gam_method()
}
if (length(msg) > 0) {
cli::cli_inform("{.fn geom_smooth} using {msg}")
}
params
},
extra_params = c("na.rm", "orientation"),
compute_group = function(data, scales, method = NULL, formula = NULL,
se = TRUE, n = 80, span = 0.75, fullrange = FALSE,
xseq = NULL, level = 0.95, method.args = list(),
na.rm = FALSE, flipped_aes = NA) {
data <- flip_data(data, flipped_aes)
if (vec_unique_count(data$x) < 2) {
# Not enough data to perform fit
return(data_frame0())
}
if (is.null(data$weight)) data$weight <- 1
if (is.null(xseq)) {
if (is.integer(data$x)) {
if (fullrange) {
xseq <- scales$x$dimension()
} else {
xseq <- sort(unique0(data$x))
}
} else {
if (fullrange) {
range <- scales$x$dimension()
} else {
range <- range(data$x, na.rm = TRUE)
}
xseq <- seq(range[1], range[2], length.out = n)
}
}
# Special case span because it's the most commonly used model argument
if (identical(method, "loess")) {
method.args$span <- span
}
if (is.character(method)) {
if (identical(method, "gam")) {
method <- gam_method()
} else {
method <- match.fun(method)
}
}
# If gam and gam's method is not specified by the user then use REML
if (identical(method, gam_method()) && is.null(method.args$method)) {
method.args$method <- "REML"
}
prediction <- try_fetch(
{
model <- inject(method(
formula,
data = data,
weights = weight,
!!!method.args
))
predictdf(model, xseq, se, level)
},
error = function(cnd) {
cli::cli_warn("Failed to fit group {data$group[1]}.", parent = cnd)
NULL
}
)
if (is.null(prediction)) {
return(NULL)
}
prediction$flipped_aes <- flipped_aes
flip_data(prediction, flipped_aes)
},
dropped_aes = c("weight"),
required_aes = c("x", "y")
)
# This function exists to silence an undeclared import warning
gam_method <- function() mgcv::gam
|