File: stat-smooth.R

package info (click to toggle)
r-cran-ggplot2 3.5.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 9,944 kB
  • sloc: sh: 15; makefile: 5
file content (208 lines) | stat: -rw-r--r-- 7,170 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#' @param method Smoothing method (function) to use, accepts either
#'   `NULL` or a character vector, e.g. `"lm"`, `"glm"`, `"gam"`, `"loess"`
#'   or a function, e.g. `MASS::rlm` or `mgcv::gam`, `stats::lm`, or `stats::loess`.
#'   `"auto"` is also accepted for backwards compatibility.  It is equivalent to
#'   `NULL`.
#'
#'   For `method = NULL` the smoothing method is chosen based on the
#'   size of the largest group (across all panels). [stats::loess()] is
#'   used for less than 1,000 observations; otherwise [mgcv::gam()] is
#'   used with `formula = y ~ s(x, bs = "cs")` with `method = "REML"`. Somewhat anecdotally,
#'   `loess` gives a better appearance, but is \eqn{O(N^{2})}{O(N^2)} in memory,
#'   so does not work for larger datasets.
#'
#'   If you have fewer than 1,000 observations but want to use the same `gam()`
#'   model that `method = NULL` would use, then set
#'   `method = "gam", formula = y ~ s(x, bs = "cs")`.
#' @param formula Formula to use in smoothing function, eg. `y ~ x`,
#'   `y ~ poly(x, 2)`, `y ~ log(x)`. `NULL` by default, in which case
#'   `method = NULL` implies `formula = y ~ x` when there are fewer than 1,000
#'   observations and `formula = y ~ s(x, bs = "cs")` otherwise.
#' @param se Display confidence interval around smooth? (`TRUE` by default, see
#'   `level` to control.)
#' @param fullrange If `TRUE`, the smoothing line gets expanded to the range of the plot,
#'   potentially beyond the data. This does not extend the line into any additional padding
#'   created by `expansion`.
#' @param xseq A numeric vector of values at which the smoother is evaluated.
#'   When `NULL` (default), `xseq` is internally evaluated as a sequence of `n`
#'   equally spaced points for continuous data.
#' @param level Level of confidence interval to use (0.95 by default).
#' @param span Controls the amount of smoothing for the default loess smoother.
#'   Smaller numbers produce wigglier lines, larger numbers produce smoother
#'   lines. Only used with loess, i.e. when `method = "loess"`,
#'   or when `method = NULL` (the default) and there are fewer than 1,000
#'   observations.
#' @param n Number of points at which to evaluate smoother.
#' @param method.args List of additional arguments passed on to the modelling
#'   function defined by `method`.
#'
#' @eval rd_computed_vars(
#'   .details = "`stat_smooth()` provides the following variables, some of
#'   which depend on the orientation:",
#'   "y|x" = "Predicted value.",
#'   "ymin|xmin" = "Lower pointwise confidence interval around the mean.",
#'   "ymax|xmax" = "Upper pointwise confidence interval around the mean.",
#'   "se" = "Standard error."
#' )
#' @export
#' @rdname geom_smooth
stat_smooth <- function(mapping = NULL, data = NULL,
                        geom = "smooth", position = "identity",
                        ...,
                        method = NULL,
                        formula = NULL,
                        se = TRUE,
                        n = 80,
                        span = 0.75,
                        fullrange = FALSE,
                        xseq = NULL,
                        level = 0.95,
                        method.args = list(),
                        na.rm = FALSE,
                        orientation = NA,
                        show.legend = NA,
                        inherit.aes = TRUE) {
  layer(
    data = data,
    mapping = mapping,
    stat = StatSmooth,
    geom = geom,
    position = position,
    show.legend = show.legend,
    inherit.aes = inherit.aes,
    params = list2(
      method = method,
      formula = formula,
      se = se,
      n = n,
      fullrange = fullrange,
      level = level,
      na.rm = na.rm,
      orientation = orientation,
      method.args = method.args,
      span = span,
      xseq = xseq,
      ...
    )
  )
}

#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
StatSmooth <- ggproto("StatSmooth", Stat,
  setup_params = function(data, params) {
    params$flipped_aes <- has_flipped_aes(data, params, ambiguous = TRUE)
    msg <- character()
    if (is.null(params$method) || identical(params$method, "auto")) {
      # Use loess for small datasets, gam with a cubic regression basis for
      # larger. Based on size of the _largest_ group to avoid bad memory
      # behaviour of loess
      max_group <- max(table(interaction(data$group, data$PANEL, drop = TRUE)))

      if (max_group < 1000) {
        params$method <- "loess"
      } else {
        params$method <- "gam"
      }
      msg <- c(msg, paste0("method = '", params$method, "'"))
    }

    if (is.null(params$formula)) {
      if (identical(params$method, "gam")) {
        params$formula <- y ~ s(x, bs = "cs")
      } else {
        params$formula <- y ~ x
      }
      msg <- c(msg, paste0("formula = '", deparse(params$formula), "'"))
    }
    if (identical(params$method, "gam")) {
      params$method <- gam_method()
    }

    if (length(msg) > 0) {
      cli::cli_inform("{.fn geom_smooth} using {msg}")
    }

    params
  },

  extra_params = c("na.rm", "orientation"),

  compute_group = function(data, scales, method = NULL, formula = NULL,
                           se = TRUE, n = 80, span = 0.75, fullrange = FALSE,
                           xseq = NULL, level = 0.95, method.args = list(),
                           na.rm = FALSE, flipped_aes = NA) {
    data <- flip_data(data, flipped_aes)
    if (vec_unique_count(data$x) < 2) {
      # Not enough data to perform fit
      return(data_frame0())
    }

    if (is.null(data$weight)) data$weight <- 1

    if (is.null(xseq)) {
      if (is.integer(data$x)) {
        if (fullrange) {
          xseq <- scales$x$dimension()
        } else {
          xseq <- sort(unique0(data$x))
        }
      } else {
        if (fullrange) {
          range <- scales$x$dimension()
        } else {
          range <- range(data$x, na.rm = TRUE)
        }
        xseq <- seq(range[1], range[2], length.out = n)
      }
    }

    # Special case span because it's the most commonly used model argument
    if (identical(method, "loess")) {
      method.args$span <- span
    }

    if (is.character(method)) {
      if (identical(method, "gam")) {
        method <- gam_method()
      } else {
        method <- match.fun(method)
      }
    }
    # If gam and gam's method is not specified by the user then use REML
    if (identical(method, gam_method()) && is.null(method.args$method)) {
      method.args$method <- "REML"
    }

    prediction <- try_fetch(
      {
        model <- inject(method(
          formula,
          data = data,
          weights = weight,
          !!!method.args
        ))
        predictdf(model, xseq, se, level)
      },
      error = function(cnd) {
        cli::cli_warn("Failed to fit group {data$group[1]}.", parent = cnd)
        NULL
      }
    )
    if (is.null(prediction)) {
      return(NULL)
    }

    prediction$flipped_aes <- flipped_aes
    flip_data(prediction, flipped_aes)
  },

  dropped_aes = c("weight"),

  required_aes = c("x", "y")
)

# This function exists to silence an undeclared import warning
gam_method <- function() mgcv::gam