File: stat-summary.R

package info (click to toggle)
r-cran-ggplot2 3.5.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 9,944 kB
  • sloc: sh: 15; makefile: 5
file content (302 lines) | stat: -rw-r--r-- 10,198 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#' Summarise y values at unique/binned x
#'
#' `stat_summary()` operates on unique `x` or `y`; `stat_summary_bin()`
#' operates on binned `x` or `y`. They are more flexible versions of
#' [stat_bin()]: instead of just counting, they can compute any
#' aggregate.
#'
#' @eval rd_orientation()
#'
#' @eval rd_aesthetics("stat", "summary")
#' @seealso [geom_errorbar()], [geom_pointrange()],
#'  [geom_linerange()], [geom_crossbar()] for geoms to
#'  display summarised data
#' @inheritParams stat_identity
#' @section Summary functions:
#' You can either supply summary functions individually (`fun`,
#' `fun.max`, `fun.min`), or as a single function (`fun.data`):
#'
#' \describe{
#'   \item{fun.data}{Complete summary function. Should take numeric vector as
#'      input and return data frame as output}
#'   \item{fun.min}{min summary function (should take numeric vector and
#'     return single number)}
#'   \item{fun}{main summary function (should take numeric vector and return
#'     single number)}
#'   \item{fun.max}{max summary function (should take numeric vector and
#'     return single number)}
#' }
#'
#' A simple vector function is easiest to work with as you can return a single
#' number, but is somewhat less flexible. If your summary function computes
#' multiple values at once (e.g. min and max), use `fun.data`.
#'
#' `fun.data` will receive data as if it was oriented along the x-axis and
#' should return a data.frame that corresponds to that orientation. The layer
#' will take care of flipping the input and output if it is oriented along the
#' y-axis.
#'
#' If no aggregation functions are supplied, will default to
#' [mean_se()].
#'
#' @param fun.data A function that is given the complete data and should
#'   return a data frame with variables `ymin`, `y`, and `ymax`.
#' @param fun.min,fun,fun.max Alternatively, supply three individual
#'   functions that are each passed a vector of values and should return a
#'   single number.
#' @param fun.ymin,fun.y,fun.ymax `r lifecycle::badge("deprecated")` Use the
#'   versions specified above instead.
#' @param fun.args Optional additional arguments passed on to the functions.
#' @export
#' @examples
#' d <- ggplot(mtcars, aes(cyl, mpg)) + geom_point()
#' d + stat_summary(fun.data = "mean_cl_boot", colour = "red", linewidth = 2, size = 3)
#'
#' # Orientation follows the discrete axis
#' ggplot(mtcars, aes(mpg, factor(cyl))) +
#'   geom_point() +
#'   stat_summary(fun.data = "mean_cl_boot", colour = "red", linewidth = 2, size = 3)
#'
#' # You can supply individual functions to summarise the value at
#' # each x:
#' d + stat_summary(fun = "median", colour = "red", size = 2, geom = "point")
#' d + stat_summary(fun = "mean", colour = "red", size = 2, geom = "point")
#' d + aes(colour = factor(vs)) + stat_summary(fun = mean, geom="line")
#'
#' d + stat_summary(fun = mean, fun.min = min, fun.max = max, colour = "red")
#'
#' d <- ggplot(diamonds, aes(cut))
#' d + geom_bar()
#' d + stat_summary(aes(y = price), fun = "mean", geom = "bar")
#'
#' # Orientation of stat_summary_bin is ambiguous and must be specified directly
#' ggplot(diamonds, aes(carat, price)) +
#'   stat_summary_bin(fun = "mean", geom = "bar", orientation = 'y')
#'
#' \donttest{
#' # Don't use ylim to zoom into a summary plot - this throws the
#' # data away
#' p <- ggplot(mtcars, aes(cyl, mpg)) +
#'   stat_summary(fun = "mean", geom = "point")
#' p
#' p + ylim(15, 30)
#' # Instead use coord_cartesian
#' p + coord_cartesian(ylim = c(15, 30))
#'
#' # A set of useful summary functions is provided from the Hmisc package:
#' stat_sum_df <- function(fun, geom="crossbar", ...) {
#'   stat_summary(fun.data = fun, colour = "red", geom = geom, width = 0.2, ...)
#' }
#' d <- ggplot(mtcars, aes(cyl, mpg)) + geom_point()
#' # The crossbar geom needs grouping to be specified when used with
#' # a continuous x axis.
#' d + stat_sum_df("mean_cl_boot", mapping = aes(group = cyl))
#' d + stat_sum_df("mean_sdl", mapping = aes(group = cyl))
#' d + stat_sum_df("mean_sdl", fun.args = list(mult = 1), mapping = aes(group = cyl))
#' d + stat_sum_df("median_hilow", mapping = aes(group = cyl))
#'
#' # An example with highly skewed distributions:
#' if (require("ggplot2movies")) {
#' set.seed(596)
#' mov <- movies[sample(nrow(movies), 1000), ]
#'  m2 <-
#'    ggplot(mov, aes(x = factor(round(rating)), y = votes)) +
#'    geom_point()
#'  m2 <-
#'    m2 +
#'    stat_summary(
#'      fun.data = "mean_cl_boot",
#'      geom = "crossbar",
#'      colour = "red", width = 0.3
#'    ) +
#'    xlab("rating")
#' m2
#' # Notice how the overplotting skews off visual perception of the mean
#' # supplementing the raw data with summary statistics is _very_ important
#'
#' # Next, we'll look at votes on a log scale.
#'
#' # Transforming the scale means the data are transformed
#' # first, after which statistics are computed:
#' m2 + scale_y_log10()
#' # Transforming the coordinate system occurs after the
#' # statistic has been computed. This means we're calculating the summary on the raw data
#' # and stretching the geoms onto the log scale.  Compare the widths of the
#' # standard errors.
#' m2 + coord_trans(y="log10")
#' }
#' }
stat_summary <- function(mapping = NULL, data = NULL,
                         geom = "pointrange", position = "identity",
                         ...,
                         fun.data = NULL,
                         fun = NULL,
                         fun.max = NULL,
                         fun.min = NULL,
                         fun.args = list(),
                         na.rm = FALSE,
                         orientation = NA,
                         show.legend = NA,
                         inherit.aes = TRUE,
                         fun.y = deprecated(),
                         fun.ymin = deprecated(),
                         fun.ymax = deprecated()) {
  if (lifecycle::is_present(fun.y)) {
    deprecate_warn0("3.3.0", "stat_summary(fun.y)", "stat_summary(fun)")
    fun = fun %||% fun.y
  }
  if (lifecycle::is_present(fun.ymin)) {
    deprecate_warn0("3.3.0", "stat_summary(fun.ymin)", "stat_summary(fun.min)")
    fun.min = fun.min %||% fun.ymin
  }
  if (lifecycle::is_present(fun.ymax)) {
    deprecate_warn0("3.3.0", "stat_summary(fun.ymax)", "stat_summary(fun.max)")
    fun.max = fun.max %||% fun.ymax
  }
  layer(
    data = data,
    mapping = mapping,
    stat = StatSummary,
    geom = geom,
    position = position,
    show.legend = show.legend,
    inherit.aes = inherit.aes,
    params = list2(
      fun.data = fun.data,
      fun = fun,
      fun.max = fun.max,
      fun.min = fun.min,
      fun.args = fun.args,
      na.rm = na.rm,
      orientation = orientation,
      ...
    )
  )
}

#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
StatSummary <- ggproto("StatSummary", Stat,
  required_aes = c("x", "y"),

  extra_params = c("na.rm", "orientation"),
  setup_params = function(data, params) {
    params$flipped_aes <- has_flipped_aes(data, params)
    params
  },

  compute_panel = function(data, scales, fun.data = NULL, fun = NULL,
                     fun.max = NULL, fun.min = NULL, fun.args = list(),
                     na.rm = FALSE, flipped_aes = FALSE) {
    data <- flip_data(data, flipped_aes)
    fun <- make_summary_fun(fun.data, fun, fun.max, fun.min, fun.args)
    summarised <- summarise_by_x(data, fun)
    summarised$flipped_aes <- flipped_aes
    flip_data(summarised, flipped_aes)
  }
)

# Summarise a data.frame by parts
# Summarise a data frame by unique value of x
#
# This function is used by [stat_summary()] to break a
# data.frame into pieces, summarise each piece, and join the pieces
# back together, retaining original columns unaffected by the summary.
#
# @param [data.frame()] to summarise
# @param vector to summarise by
# @param summary function (must take and return a data.frame)
# @param other arguments passed on to summary function
# @keyword internal
summarise_by_x <- function(data, summary, ...) {
  summary <- dapply(data, c("group", "x"), summary, ...)
  unique <- dapply(data, c("group", "x"), uniquecols)
  unique$y <- NULL

  merge(summary, unique, by = c("x", "group"), sort = FALSE)
}

#' A selection of summary functions from Hmisc
#'
#' @description
#' These are wrappers around functions from \pkg{Hmisc} designed to make them
#' easier to use with [stat_summary()]. See the Hmisc documentation
#' for more details:
#'
#'  - [Hmisc::smean.cl.boot()]
#'  - [Hmisc::smean.cl.normal()]
#'  - [Hmisc::smean.sdl()]
#'  - [Hmisc::smedian.hilow()]
#'
#' @param x a numeric vector
#' @param ... other arguments passed on to the respective Hmisc function.
#' @return A data frame with columns `y`, `ymin`, and `ymax`.
#' @name hmisc
#' @examples
#' if (requireNamespace("Hmisc", quietly = TRUE)) {
#' set.seed(1)
#' x <- rnorm(100)
#' mean_cl_boot(x)
#' mean_cl_normal(x)
#' mean_sdl(x)
#' median_hilow(x)
#' }
NULL

wrap_hmisc <- function(fun) {

  function(x, ...) {
    check_installed("Hmisc")

    fun <- getExportedValue("Hmisc", fun)
    result <- fun(x = x, ...)

    rename(
      data_frame0(!!!as.list(result)),
      c(Median = "y", Mean = "y", Lower = "ymin", Upper = "ymax")
    )
  }
}
#' @export
#' @rdname hmisc
mean_cl_boot <- wrap_hmisc("smean.cl.boot")
#' @export
#' @rdname hmisc
mean_cl_normal <- wrap_hmisc("smean.cl.normal")
#' @export
#' @rdname hmisc
mean_sdl <- wrap_hmisc("smean.sdl")
#' @export
#' @rdname hmisc
median_hilow <- wrap_hmisc("smedian.hilow")

#' Calculate mean and standard error of the mean
#'
#' For use with [stat_summary()]
#'
#' @param x numeric vector.
#' @param mult number of multiples of standard error.
#' @return A data frame with three columns:
#' \describe{
#'     \item{`y`}{ The mean.}
#'     \item{`ymin`}{ The mean minus the multiples of the standard error.}
#'     \item{`ymax`}{ The mean plus the multiples of the standard error.}
#' }
#' @export
#' @examples
#' set.seed(1)
#' x <- rnorm(100)
#' mean_se(x)
mean_se <- function(x, mult = 1) {
  x <- stats::na.omit(x)
  se <- mult * sqrt(stats::var(x) / length(x))
  mean <- mean(x)
  data_frame0(
    y = mean,
    ymin = mean - se,
    ymax = mean + se,
    .size = 1
  )
}