1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
#' @inheritParams layer
#' @inheritParams geom_point
#' @inheritParams stat_density
#' @param scale if "area" (default), all violins have the same area (before trimming
#' the tails). If "count", areas are scaled proportionally to the number of
#' observations. If "width", all violins have the same maximum width.
#' @param drop Whether to discard groups with less than 2 observations
#' (`TRUE`, default) or keep such groups for position adjustment purposes
#' (`FALSE`).
#'
#' @eval rd_computed_vars(
#' density = "Density estimate.",
#' scaled = "Density estimate, scaled to a maximum of 1.",
#' count = "Density * number of points - probably useless for violin
#' plots.",
#' violinwidth = "Density scaled for the violin plot, according to area,
#' counts or to a constant maximum width.",
#' n = "Number of points.",
#' width = "Width of violin bounding box."
#' )
#'
#' @seealso [geom_violin()] for examples, and [stat_density()]
#' for examples with data along the x axis.
#' @export
#' @rdname geom_violin
stat_ydensity <- function(mapping = NULL, data = NULL,
geom = "violin", position = "dodge",
...,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
trim = TRUE,
scale = "area",
drop = TRUE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
bounds = c(-Inf, Inf)) {
scale <- arg_match0(scale, c("area", "count", "width"))
layer(
data = data,
mapping = mapping,
stat = StatYdensity,
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list2(
bw = bw,
adjust = adjust,
kernel = kernel,
trim = trim,
scale = scale,
drop = drop,
na.rm = na.rm,
bounds = bounds,
...
)
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
StatYdensity <- ggproto("StatYdensity", Stat,
required_aes = c("x", "y"),
non_missing_aes = "weight",
setup_params = function(data, params) {
params$flipped_aes <- has_flipped_aes(data, params, main_is_orthogonal = TRUE, group_has_equal = TRUE)
params
},
extra_params = c("na.rm", "orientation"),
compute_group = function(self, data, scales, width = NULL, bw = "nrd0", adjust = 1,
kernel = "gaussian", trim = TRUE, na.rm = FALSE,
drop = TRUE, flipped_aes = FALSE, bounds = c(-Inf, Inf)) {
if (nrow(data) < 2) {
if (isTRUE(drop)) {
cli::cli_warn(c(
"Groups with fewer than two datapoints have been dropped.",
i = paste0(
"Set {.code drop = FALSE} to consider such groups for position ",
"adjustment purposes."
)))
return(data_frame0())
}
ans <- data_frame0(x = data$x, n = nrow(data))
return(ans)
}
range <- range(data$y, na.rm = TRUE)
modifier <- if (trim) 0 else 3
bw <- calc_bw(data$y, bw)
dens <- compute_density(
data$y, data[["weight"]],
from = range[1] - modifier * bw, to = range[2] + modifier * bw,
bw = bw, adjust = adjust, kernel = kernel, bounds = bounds
)
dens$y <- dens$x
# Compute width if x has multiple values
if (vec_unique_count(data$x) > 1) {
dens$x <- mean(range(data$x))
width <- diff(range(data$x)) * 0.9
} else {
# Explicitly repeat to preserve data$x's mapped_discrete class
dens$x <- vec_rep(data$x[1], nrow(dens))
}
dens$width <- width
dens
},
compute_panel = function(self, data, scales, width = NULL, bw = "nrd0", adjust = 1,
kernel = "gaussian", trim = TRUE, na.rm = FALSE,
scale = "area", flipped_aes = FALSE, drop = TRUE,
bounds = c(-Inf, Inf)) {
data <- flip_data(data, flipped_aes)
data <- ggproto_parent(Stat, self)$compute_panel(
data, scales, width = width, bw = bw, adjust = adjust, kernel = kernel,
trim = trim, na.rm = na.rm, drop = drop, bounds = bounds,
)
if (!drop && any(data$n < 2)) {
cli::cli_warn(
"Cannot compute density for groups with fewer than two datapoints."
)
}
# choose how violins are scaled relative to each other
data$violinwidth <- switch(scale,
# area : keep the original densities but scale them to a max width of 1
# for plotting purposes only
area = data$density / max(data$density, na.rm = TRUE),
# count: use the original densities scaled to a maximum of 1 (as above)
# and then scale them according to the number of observations
count = data$density / max(data$density, na.rm = TRUE) *
data$n / max(data$n),
# width: constant width (density scaled to a maximum of 1)
width = data$scaled
)
data$flipped_aes <- flipped_aes
flip_data(data, flipped_aes)
},
dropped_aes = "weight"
)
calc_bw <- function(x, bw) {
if (is.character(bw)) {
if (length(x) < 2) {
cli::cli_abort("{.arg x} must contain at least 2 elements to select a bandwidth automatically.")
}
bw <- switch(
to_lower_ascii(bw),
nrd0 = stats::bw.nrd0(x),
nrd = stats::bw.nrd(x),
ucv = stats::bw.ucv(x),
bcv = stats::bw.bcv(x),
sj = ,
`sj-ste` = stats::bw.SJ(x, method = "ste"),
`sj-dpi` = stats::bw.SJ(x, method = "dpi"),
cli::cli_abort("{.var {bw}} is not a valid bandwidth rule.")
)
}
bw
}
|