File: stat-ydensity.R

package info (click to toggle)
r-cran-ggplot2 3.5.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 9,944 kB
  • sloc: sh: 15; makefile: 5
file content (174 lines) | stat: -rw-r--r-- 5,774 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#' @inheritParams layer
#' @inheritParams geom_point
#' @inheritParams stat_density
#' @param scale if "area" (default), all violins have the same area (before trimming
#'   the tails). If "count", areas are scaled proportionally to the number of
#'   observations. If "width", all violins have the same maximum width.
#' @param drop Whether to discard groups with less than 2 observations
#'   (`TRUE`, default) or keep such groups for position adjustment purposes
#'   (`FALSE`).
#'
#' @eval rd_computed_vars(
#'   density = "Density estimate.",
#'   scaled  = "Density estimate, scaled to a maximum of 1.",
#'   count   = "Density * number of points - probably useless for violin
#'   plots.",
#'   violinwidth = "Density scaled for the violin plot, according to area,
#'   counts or to a constant maximum width.",
#'   n = "Number of points.",
#'   width = "Width of violin bounding box."
#' )
#'
#' @seealso [geom_violin()] for examples, and [stat_density()]
#'   for examples with data along the x axis.
#' @export
#' @rdname geom_violin
stat_ydensity <- function(mapping = NULL, data = NULL,
                          geom = "violin", position = "dodge",
                          ...,
                          bw = "nrd0",
                          adjust = 1,
                          kernel = "gaussian",
                          trim = TRUE,
                          scale = "area",
                          drop  = TRUE,
                          na.rm = FALSE,
                          orientation = NA,
                          show.legend = NA,
                          inherit.aes = TRUE,
                          bounds = c(-Inf, Inf)) {
  scale <- arg_match0(scale, c("area", "count", "width"))

  layer(
    data = data,
    mapping = mapping,
    stat = StatYdensity,
    geom = geom,
    position = position,
    show.legend = show.legend,
    inherit.aes = inherit.aes,
    params = list2(
      bw = bw,
      adjust = adjust,
      kernel = kernel,
      trim = trim,
      scale = scale,
      drop  = drop,
      na.rm = na.rm,
      bounds = bounds,
      ...
    )
  )
}


#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
StatYdensity <- ggproto("StatYdensity", Stat,
  required_aes = c("x", "y"),
  non_missing_aes = "weight",

  setup_params = function(data, params) {
    params$flipped_aes <- has_flipped_aes(data, params, main_is_orthogonal = TRUE, group_has_equal = TRUE)

    params
  },

  extra_params = c("na.rm", "orientation"),

  compute_group = function(self, data, scales, width = NULL, bw = "nrd0", adjust = 1,
                       kernel = "gaussian", trim = TRUE, na.rm = FALSE,
                       drop = TRUE, flipped_aes = FALSE, bounds = c(-Inf, Inf)) {
    if (nrow(data) < 2) {
      if (isTRUE(drop)) {
        cli::cli_warn(c(
          "Groups with fewer than two datapoints have been dropped.",
          i = paste0(
            "Set {.code drop = FALSE} to consider such groups for position ",
            "adjustment purposes."
        )))
        return(data_frame0())
      }
      ans <- data_frame0(x = data$x, n = nrow(data))
      return(ans)
    }
    range <- range(data$y, na.rm = TRUE)
    modifier <- if (trim) 0 else 3
    bw <- calc_bw(data$y, bw)
    dens <- compute_density(
      data$y, data[["weight"]],
      from = range[1] - modifier * bw, to = range[2] + modifier * bw,
      bw = bw, adjust = adjust, kernel = kernel, bounds = bounds
    )

    dens$y <- dens$x

    # Compute width if x has multiple values
    if (vec_unique_count(data$x) > 1) {
      dens$x <- mean(range(data$x))
      width <- diff(range(data$x)) * 0.9
    } else {
      # Explicitly repeat to preserve data$x's mapped_discrete class
      dens$x <- vec_rep(data$x[1], nrow(dens))
    }
    dens$width <- width

    dens
  },

  compute_panel = function(self, data, scales, width = NULL, bw = "nrd0", adjust = 1,
                           kernel = "gaussian", trim = TRUE, na.rm = FALSE,
                           scale = "area", flipped_aes = FALSE, drop = TRUE,
                           bounds = c(-Inf, Inf)) {
    data <- flip_data(data, flipped_aes)
    data <- ggproto_parent(Stat, self)$compute_panel(
      data, scales, width = width, bw = bw, adjust = adjust, kernel = kernel,
      trim = trim, na.rm = na.rm, drop = drop, bounds = bounds,
    )
    if (!drop && any(data$n < 2)) {
      cli::cli_warn(
        "Cannot compute density for groups with fewer than two datapoints."
      )
    }

    # choose how violins are scaled relative to each other
    data$violinwidth <- switch(scale,
      # area : keep the original densities but scale them to a max width of 1
      #        for plotting purposes only
      area = data$density / max(data$density, na.rm = TRUE),
      # count: use the original densities scaled to a maximum of 1 (as above)
      #        and then scale them according to the number of observations
      count = data$density / max(data$density, na.rm = TRUE) *
        data$n / max(data$n),
      # width: constant width (density scaled to a maximum of 1)
      width = data$scaled
    )
    data$flipped_aes <- flipped_aes
    flip_data(data, flipped_aes)
  },

  dropped_aes = "weight"
)

calc_bw <- function(x, bw) {
  if (is.character(bw)) {
    if (length(x) < 2) {
      cli::cli_abort("{.arg x} must contain at least 2 elements to select a bandwidth automatically.")
    }

    bw <- switch(
      to_lower_ascii(bw),
      nrd0 = stats::bw.nrd0(x),
      nrd = stats::bw.nrd(x),
      ucv = stats::bw.ucv(x),
      bcv = stats::bw.bcv(x),
      sj = ,
      `sj-ste` = stats::bw.SJ(x, method = "ste"),
      `sj-dpi` = stats::bw.SJ(x, method = "dpi"),
      cli::cli_abort("{.var {bw}} is not a valid bandwidth rule.")
    )
  }
  bw
}