File: fortify.lm.Rd

package info (click to toggle)
r-cran-ggplot2 3.5.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 9,944 kB
  • sloc: sh: 15; makefile: 5
file content (88 lines) | stat: -rw-r--r-- 2,404 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/fortify-lm.R
\name{fortify.lm}
\alias{fortify.lm}
\title{Supplement the data fitted to a linear model with model fit statistics.}
\usage{
\method{fortify}{lm}(model, data = model$model, ...)
}
\arguments{
\item{model}{linear model}

\item{data}{data set, defaults to data used to fit model}

\item{...}{not used by this method}
}
\value{
The original data with extra columns:
\item{.hat}{Diagonal of the hat matrix}
\item{.sigma}{Estimate of residual standard deviation when
corresponding observation is dropped from model}
\item{.cooksd}{Cooks distance, \code{\link[=cooks.distance]{cooks.distance()}}}
\item{.fitted}{Fitted values of model}
\item{.resid}{Residuals}
\item{.stdresid}{Standardised residuals}
}
\description{
If you have missing values in your model data, you may need to refit
the model with \code{na.action = na.exclude}.
}
\examples{
mod <- lm(mpg ~ wt, data = mtcars)
head(fortify(mod))
head(fortify(mod, mtcars))

plot(mod, which = 1)

ggplot(mod, aes(.fitted, .resid)) +
  geom_point() +
  geom_hline(yintercept = 0) +
  geom_smooth(se = FALSE)

ggplot(mod, aes(.fitted, .stdresid)) +
  geom_point() +
  geom_hline(yintercept = 0) +
  geom_smooth(se = FALSE)

ggplot(fortify(mod, mtcars), aes(.fitted, .stdresid)) +
  geom_point(aes(colour = factor(cyl)))

ggplot(fortify(mod, mtcars), aes(mpg, .stdresid)) +
  geom_point(aes(colour = factor(cyl)))

plot(mod, which = 2)
ggplot(mod) +
  stat_qq(aes(sample = .stdresid)) +
  geom_abline()

plot(mod, which = 3)
ggplot(mod, aes(.fitted, sqrt(abs(.stdresid)))) +
  geom_point() +
  geom_smooth(se = FALSE)

plot(mod, which = 4)
ggplot(mod, aes(seq_along(.cooksd), .cooksd)) +
  geom_col()

plot(mod, which = 5)
ggplot(mod, aes(.hat, .stdresid)) +
  geom_vline(linewidth = 2, colour = "white", xintercept = 0) +
  geom_hline(linewidth = 2, colour = "white", yintercept = 0) +
  geom_point() + geom_smooth(se = FALSE)

ggplot(mod, aes(.hat, .stdresid)) +
  geom_point(aes(size = .cooksd)) +
  geom_smooth(se = FALSE, linewidth = 0.5)

plot(mod, which = 6)
ggplot(mod, aes(.hat, .cooksd)) +
  geom_vline(xintercept = 0, colour = NA) +
  geom_abline(slope = seq(0, 3, by = 0.5), colour = "white") +
  geom_smooth(se = FALSE) +
  geom_point()

ggplot(mod, aes(.hat, .cooksd)) +
  geom_point(aes(size = .cooksd / .hat)) +
  scale_size_area()
}
\keyword{internal}