1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/stat-summary-bin.R, R/stat-summary.R
\name{stat_summary_bin}
\alias{stat_summary_bin}
\alias{stat_summary}
\title{Summarise y values at unique/binned x}
\usage{
stat_summary_bin(
mapping = NULL,
data = NULL,
geom = "pointrange",
position = "identity",
...,
fun.data = NULL,
fun = NULL,
fun.max = NULL,
fun.min = NULL,
fun.args = list(),
bins = 30,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
fun.y = deprecated(),
fun.ymin = deprecated(),
fun.ymax = deprecated()
)
stat_summary(
mapping = NULL,
data = NULL,
geom = "pointrange",
position = "identity",
...,
fun.data = NULL,
fun = NULL,
fun.max = NULL,
fun.min = NULL,
fun.args = list(),
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
fun.y = deprecated(),
fun.ymin = deprecated(),
fun.ymax = deprecated()
)
}
\arguments{
\item{mapping}{Set of aesthetic mappings created by \code{\link[=aes]{aes()}}. If specified and
\code{inherit.aes = TRUE} (the default), it is combined with the default mapping
at the top level of the plot. You must supply \code{mapping} if there is no plot
mapping.}
\item{data}{The data to be displayed in this layer. There are three
options:
If \code{NULL}, the default, the data is inherited from the plot
data as specified in the call to \code{\link[=ggplot]{ggplot()}}.
A \code{data.frame}, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
\code{\link[=fortify]{fortify()}} for which variables will be created.
A \code{function} will be called with a single argument,
the plot data. The return value must be a \code{data.frame}, and
will be used as the layer data. A \code{function} can be created
from a \code{formula} (e.g. \code{~ head(.x, 10)}).}
\item{geom}{The geometric object to use to display the data for this layer.
When using a \verb{stat_*()} function to construct a layer, the \code{geom} argument
can be used to override the default coupling between stats and geoms. The
\code{geom} argument accepts the following:
\itemize{
\item A \code{Geom} ggproto subclass, for example \code{GeomPoint}.
\item A string naming the geom. To give the geom as a string, strip the
function name of the \code{geom_} prefix. For example, to use \code{geom_point()},
give the geom as \code{"point"}.
\item For more information and other ways to specify the geom, see the
\link[=layer_geoms]{layer geom} documentation.
}}
\item{position}{A position adjustment to use on the data for this layer. This
can be used in various ways, including to prevent overplotting and
improving the display. The \code{position} argument accepts the following:
\itemize{
\item The result of calling a position function, such as \code{position_jitter()}.
This method allows for passing extra arguments to the position.
\item A string naming the position adjustment. To give the position as a
string, strip the function name of the \code{position_} prefix. For example,
to use \code{position_jitter()}, give the position as \code{"jitter"}.
\item For more information and other ways to specify the position, see the
\link[=layer_positions]{layer position} documentation.
}}
\item{...}{Other arguments passed on to \code{\link[=layer]{layer()}}'s \code{params} argument. These
arguments broadly fall into one of 4 categories below. Notably, further
arguments to the \code{position} argument, or aesthetics that are required
can \emph{not} be passed through \code{...}. Unknown arguments that are not part
of the 4 categories below are ignored.
\itemize{
\item Static aesthetics that are not mapped to a scale, but are at a fixed
value and apply to the layer as a whole. For example, \code{colour = "red"}
or \code{linewidth = 3}. The geom's documentation has an \strong{Aesthetics}
section that lists the available options. The 'required' aesthetics
cannot be passed on to the \code{params}. Please note that while passing
unmapped aesthetics as vectors is technically possible, the order and
required length is not guaranteed to be parallel to the input data.
\item When constructing a layer using
a \verb{stat_*()} function, the \code{...} argument can be used to pass on
parameters to the \code{geom} part of the layer. An example of this is
\code{stat_density(geom = "area", outline.type = "both")}. The geom's
documentation lists which parameters it can accept.
\item Inversely, when constructing a layer using a
\verb{geom_*()} function, the \code{...} argument can be used to pass on parameters
to the \code{stat} part of the layer. An example of this is
\code{geom_area(stat = "density", adjust = 0.5)}. The stat's documentation
lists which parameters it can accept.
\item The \code{key_glyph} argument of \code{\link[=layer]{layer()}} may also be passed on through
\code{...}. This can be one of the functions described as
\link[=draw_key]{key glyphs}, to change the display of the layer in the legend.
}}
\item{fun.data}{A function that is given the complete data and should
return a data frame with variables \code{ymin}, \code{y}, and \code{ymax}.}
\item{fun.min, fun, fun.max}{Alternatively, supply three individual
functions that are each passed a vector of values and should return a
single number.}
\item{fun.args}{Optional additional arguments passed on to the functions.}
\item{bins}{Number of bins. Overridden by \code{binwidth}. Defaults to 30.}
\item{binwidth}{The width of the bins. Can be specified as a numeric value
or as a function that calculates width from unscaled x. Here, "unscaled x"
refers to the original x values in the data, before application of any
scale transformation. When specifying a function along with a grouping
structure, the function will be called once per group.
The default is to use the number of bins in \code{bins},
covering the range of the data. You should always override
this value, exploring multiple widths to find the best to illustrate the
stories in your data.
The bin width of a date variable is the number of days in each time; the
bin width of a time variable is the number of seconds.}
\item{breaks}{Alternatively, you can supply a numeric vector giving the bin
boundaries. Overrides \code{binwidth} and \code{bins}.}
\item{na.rm}{If \code{FALSE}, the default, missing values are removed with
a warning. If \code{TRUE}, missing values are silently removed.}
\item{orientation}{The orientation of the layer. The default (\code{NA})
automatically determines the orientation from the aesthetic mapping. In the
rare event that this fails it can be given explicitly by setting \code{orientation}
to either \code{"x"} or \code{"y"}. See the \emph{Orientation} section for more detail.}
\item{show.legend}{logical. Should this layer be included in the legends?
\code{NA}, the default, includes if any aesthetics are mapped.
\code{FALSE} never includes, and \code{TRUE} always includes.
It can also be a named logical vector to finely select the aesthetics to
display.}
\item{inherit.aes}{If \code{FALSE}, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. \code{\link[=borders]{borders()}}.}
\item{fun.ymin, fun.y, fun.ymax}{\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#deprecated}{\figure{lifecycle-deprecated.svg}{options: alt='[Deprecated]'}}}{\strong{[Deprecated]}} Use the
versions specified above instead.}
}
\description{
\code{stat_summary()} operates on unique \code{x} or \code{y}; \code{stat_summary_bin()}
operates on binned \code{x} or \code{y}. They are more flexible versions of
\code{\link[=stat_bin]{stat_bin()}}: instead of just counting, they can compute any
aggregate.
}
\section{Orientation}{
This geom treats each axis differently and, thus, can thus have two orientations. Often the orientation is easy to deduce from a combination of the given mappings and the types of positional scales in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation can be specified directly using the \code{orientation} parameter, which can be either \code{"x"} or \code{"y"}. The value gives the axis that the geom should run along, \code{"x"} being the default orientation you would expect for the geom.
}
\section{Aesthetics}{
\code{stat_summary()} understands the following aesthetics (required aesthetics are in bold):
\itemize{
\item \strong{\code{\link[=aes_position]{x}}}
\item \strong{\code{\link[=aes_position]{y}}}
\item \code{\link[=aes_group_order]{group}}
}
Learn more about setting these aesthetics in \code{vignette("ggplot2-specs")}.
}
\section{Summary functions}{
You can either supply summary functions individually (\code{fun},
\code{fun.max}, \code{fun.min}), or as a single function (\code{fun.data}):
\describe{
\item{fun.data}{Complete summary function. Should take numeric vector as
input and return data frame as output}
\item{fun.min}{min summary function (should take numeric vector and
return single number)}
\item{fun}{main summary function (should take numeric vector and return
single number)}
\item{fun.max}{max summary function (should take numeric vector and
return single number)}
}
A simple vector function is easiest to work with as you can return a single
number, but is somewhat less flexible. If your summary function computes
multiple values at once (e.g. min and max), use \code{fun.data}.
\code{fun.data} will receive data as if it was oriented along the x-axis and
should return a data.frame that corresponds to that orientation. The layer
will take care of flipping the input and output if it is oriented along the
y-axis.
If no aggregation functions are supplied, will default to
\code{\link[=mean_se]{mean_se()}}.
}
\examples{
d <- ggplot(mtcars, aes(cyl, mpg)) + geom_point()
d + stat_summary(fun.data = "mean_cl_boot", colour = "red", linewidth = 2, size = 3)
# Orientation follows the discrete axis
ggplot(mtcars, aes(mpg, factor(cyl))) +
geom_point() +
stat_summary(fun.data = "mean_cl_boot", colour = "red", linewidth = 2, size = 3)
# You can supply individual functions to summarise the value at
# each x:
d + stat_summary(fun = "median", colour = "red", size = 2, geom = "point")
d + stat_summary(fun = "mean", colour = "red", size = 2, geom = "point")
d + aes(colour = factor(vs)) + stat_summary(fun = mean, geom="line")
d + stat_summary(fun = mean, fun.min = min, fun.max = max, colour = "red")
d <- ggplot(diamonds, aes(cut))
d + geom_bar()
d + stat_summary(aes(y = price), fun = "mean", geom = "bar")
# Orientation of stat_summary_bin is ambiguous and must be specified directly
ggplot(diamonds, aes(carat, price)) +
stat_summary_bin(fun = "mean", geom = "bar", orientation = 'y')
\donttest{
# Don't use ylim to zoom into a summary plot - this throws the
# data away
p <- ggplot(mtcars, aes(cyl, mpg)) +
stat_summary(fun = "mean", geom = "point")
p
p + ylim(15, 30)
# Instead use coord_cartesian
p + coord_cartesian(ylim = c(15, 30))
# A set of useful summary functions is provided from the Hmisc package:
stat_sum_df <- function(fun, geom="crossbar", ...) {
stat_summary(fun.data = fun, colour = "red", geom = geom, width = 0.2, ...)
}
d <- ggplot(mtcars, aes(cyl, mpg)) + geom_point()
# The crossbar geom needs grouping to be specified when used with
# a continuous x axis.
d + stat_sum_df("mean_cl_boot", mapping = aes(group = cyl))
d + stat_sum_df("mean_sdl", mapping = aes(group = cyl))
d + stat_sum_df("mean_sdl", fun.args = list(mult = 1), mapping = aes(group = cyl))
d + stat_sum_df("median_hilow", mapping = aes(group = cyl))
# An example with highly skewed distributions:
if (require("ggplot2movies")) {
set.seed(596)
mov <- movies[sample(nrow(movies), 1000), ]
m2 <-
ggplot(mov, aes(x = factor(round(rating)), y = votes)) +
geom_point()
m2 <-
m2 +
stat_summary(
fun.data = "mean_cl_boot",
geom = "crossbar",
colour = "red", width = 0.3
) +
xlab("rating")
m2
# Notice how the overplotting skews off visual perception of the mean
# supplementing the raw data with summary statistics is _very_ important
# Next, we'll look at votes on a log scale.
# Transforming the scale means the data are transformed
# first, after which statistics are computed:
m2 + scale_y_log10()
# Transforming the coordinate system occurs after the
# statistic has been computed. This means we're calculating the summary on the raw data
# and stretching the geoms onto the log scale. Compare the widths of the
# standard errors.
m2 + coord_trans(y="log10")
}
}
}
\seealso{
\code{\link[=geom_errorbar]{geom_errorbar()}}, \code{\link[=geom_pointrange]{geom_pointrange()}},
\code{\link[=geom_linerange]{geom_linerange()}}, \code{\link[=geom_crossbar]{geom_crossbar()}} for geoms to
display summarised data
}
|