File: tidyeval.Rd

package info (click to toggle)
r-cran-ggplot2 3.5.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 9,944 kB
  • sloc: sh: 15; makefile: 5
file content (106 lines) | stat: -rw-r--r-- 4,471 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/utilities-tidy-eval.R
\name{tidyeval}
\alias{tidyeval}
\alias{expr}
\alias{enquo}
\alias{enquos}
\alias{sym}
\alias{syms}
\alias{.data}
\alias{as_label}
\alias{quo_name}
\alias{quo}
\alias{quos}
\alias{enexpr}
\alias{enexprs}
\alias{ensym}
\alias{ensyms}
\title{Tidy eval helpers}
\description{
This page lists the tidy eval tools reexported in this package from
rlang. To learn about using tidy eval in scripts and packages at a
high level, see the \href{https://dplyr.tidyverse.org/articles/programming.html}{dplyr programming vignette}
and the \href{https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html}{ggplot2 in packages vignette}.
The \href{https://adv-r.hadley.nz/metaprogramming.html}{Metaprogramming section} of \href{https://adv-r.hadley.nz}{Advanced R} may also be useful for a deeper dive.
\itemize{
\item The tidy eval operators \verb{\{\{}, \verb{!!}, and \verb{!!!} are syntactic
constructs which are specially interpreted by tidy eval functions.
You will mostly need \verb{\{\{}, as \verb{!!} and \verb{!!!} are more advanced
operators which you should not have to use in simple cases.

The curly-curly operator \verb{\{\{} allows you to tunnel data-variables
passed from function arguments inside other tidy eval functions.
\verb{\{\{} is designed for individual arguments. To pass multiple
arguments contained in dots, use \code{...} in the normal way.

\if{html}{\out{<div class="sourceCode">}}\preformatted{my_function <- function(data, var, ...) \{
  data \%>\%
    group_by(...) \%>\%
    summarise(mean = mean(\{\{ var \}\}))
\}
}\if{html}{\out{</div>}}
\item \code{\link[=enquo]{enquo()}} and \code{\link[=enquos]{enquos()}} delay the execution of one or several
function arguments. The former returns a single expression, the
latter returns a list of expressions. Once defused, expressions
will no longer evaluate on their own. They must be injected back
into an evaluation context with \verb{!!} (for a single expression) and
\verb{!!!} (for a list of expressions).

\if{html}{\out{<div class="sourceCode">}}\preformatted{my_function <- function(data, var, ...) \{
  # Defuse
  var <- enquo(var)
  dots <- enquos(...)

  # Inject
  data \%>\%
    group_by(!!!dots) \%>\%
    summarise(mean = mean(!!var))
\}
}\if{html}{\out{</div>}}

In this simple case, the code is equivalent to the usage of \verb{\{\{}
and \code{...} above. Defusing with \code{enquo()} or \code{enquos()} is only
needed in more complex cases, for instance if you need to inspect
or modify the expressions in some way.
\item The \code{.data} pronoun is an object that represents the current
slice of data. If you have a variable name in a string, use the
\code{.data} pronoun to subset that variable with \code{[[}.

\if{html}{\out{<div class="sourceCode">}}\preformatted{my_var <- "disp"
mtcars \%>\% summarise(mean = mean(.data[[my_var]]))
}\if{html}{\out{</div>}}
\item Another tidy eval operator is \verb{:=}. It makes it possible to use
glue and curly-curly syntax on the LHS of \code{=}. For technical
reasons, the R language doesn't support complex expressions on
the left of \code{=}, so we use \verb{:=} as a workaround.

\if{html}{\out{<div class="sourceCode">}}\preformatted{my_function <- function(data, var, suffix = "foo") \{
  # Use `\{\{` to tunnel function arguments and the usual glue
  # operator `\{` to interpolate plain strings.
  data \%>\%
    summarise("\{\{ var \}\}_mean_\{suffix\}" := mean(\{\{ var \}\}))
\}
}\if{html}{\out{</div>}}
\item Many tidy eval functions like \code{dplyr::mutate()} or
\code{dplyr::summarise()} give an automatic name to unnamed inputs. If
you need to create the same sort of automatic names by yourself,
use \code{as_label()}. For instance, the glue-tunnelling syntax above
can be reproduced manually with:

\if{html}{\out{<div class="sourceCode">}}\preformatted{my_function <- function(data, var, suffix = "foo") \{
  var <- enquo(var)
  prefix <- as_label(var)
  data \%>\%
    summarise("\{prefix\}_mean_\{suffix\}" := mean(!!var))
\}
}\if{html}{\out{</div>}}

Expressions defused with \code{enquo()} (or tunnelled with \verb{\{\{}) need
not be simple column names, they can be arbitrarily complex.
\code{as_label()} handles those cases gracefully. If your code assumes
a simple column name, use \code{as_name()} instead. This is safer
because it throws an error if the input is not a name as expected.
}
}
\keyword{internal}