File: gghistogram.Rd

package info (click to toggle)
r-cran-ggpubr 0.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 3,240 kB
  • sloc: makefile: 2
file content (200 lines) | stat: -rw-r--r-- 7,012 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/gghistogram.R
\name{gghistogram}
\alias{gghistogram}
\title{Histogram plot}
\usage{
gghistogram(
  data,
  x,
  y = "count",
  combine = FALSE,
  merge = FALSE,
  weight = NULL,
  color = "black",
  fill = NA,
  palette = NULL,
  size = NULL,
  linetype = "solid",
  alpha = 0.5,
  bins = NULL,
  binwidth = NULL,
  title = NULL,
  xlab = NULL,
  ylab = NULL,
  facet.by = NULL,
  panel.labs = NULL,
  short.panel.labs = TRUE,
  add = c("none", "mean", "median"),
  add.params = list(linetype = "dashed"),
  rug = FALSE,
  add_density = FALSE,
  label = NULL,
  font.label = list(size = 11, color = "black"),
  label.select = NULL,
  repel = FALSE,
  label.rectangle = FALSE,
  position = position_identity(),
  ggtheme = theme_pubr(),
  ...
)
}
\arguments{
\item{data}{a data frame}

\item{x}{variable to be drawn.}

\item{y}{one of "density" or "count".}

\item{combine}{logical value. Default is FALSE. Used only when y is a vector
containing multiple variables to plot. If TRUE, create a multi-panel plot by
combining the plot of y variables.}

\item{merge}{logical or character value. Default is FALSE. Used only when y is
a vector containing multiple variables to plot. If TRUE, merge multiple y
variables in the same plotting area. Allowed values include also "asis"
(TRUE) and "flip". If merge = "flip", then y variables are used as x tick
labels and the x variable is used as grouping variable.}

\item{weight}{a variable name available in the input data for creating a weighted histogram.}

\item{color, fill}{histogram line color and fill color.}

\item{palette}{the color palette to be used for coloring or filling by groups.
Allowed values include "grey" for grey color palettes; brewer palettes e.g.
"RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and
scientific journal palettes from ggsci R package, e.g.: "npg", "aaas",
"lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty".}

\item{size}{Numeric value (e.g.: size = 1). change the size of points and
outlines.}

\item{linetype}{line type. See \code{\link{show_line_types}}.}

\item{alpha}{numeric value specifying fill color transparency. Value should
be in [0, 1], where 0 is full transparency and 1 is no transparency.}

\item{bins}{Number of bins. Defaults to 30.}

\item{binwidth}{numeric value specifying bin width. use value between 0 and 1
when you have a strong dense dotplot. For example binwidth = 0.2.}

\item{title}{plot main title.}

\item{xlab}{character vector specifying x axis labels. Use xlab = FALSE to
hide xlab.}

\item{ylab}{character vector specifying y axis labels. Use ylab = FALSE to
hide ylab.}

\item{facet.by}{character vector, of length 1 or 2, specifying grouping
variables for faceting the plot into multiple panels. Should be in the data.}

\item{panel.labs}{a list of one or two character vectors to modify facet panel
labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies
the labels for the "sex" variable. For two grouping variables, you can use
for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs",
"Lev", "Lev2") ).}

\item{short.panel.labs}{logical value. Default is TRUE. If TRUE, create short
labels for panels by omitting variable names; in other words panels will be
labelled only by variable grouping levels.}

\item{add}{allowed values are one of "mean" or "median" (for adding mean or
median line, respectively).}

\item{add.params}{parameters (color, size, linetype) for the argument 'add';
e.g.: add.params = list(color = "red").}

\item{rug}{logical value. If TRUE, add marginal rug.}

\item{add_density}{logical value. If TRUE, add density curves.}

\item{label}{the name of the column containing point labels. Can be also a
character vector with length = nrow(data).}

\item{font.label}{a list which can contain the combination of the following
elements: the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic",
"bold.italic") and the color (e.g.: "red") of labels. For example font.label
= list(size = 14, face = "bold", color ="red"). To specify only the size and
the style, use font.label = list(size = 14, face = "plain").}

\item{label.select}{can be of two formats: \itemize{ \item a character vector
specifying some labels to show. \item a list containing one or the
combination of the following components: \itemize{ \item \code{top.up} and
\code{top.down}: to display the labels  of the top up/down points. For
example, \code{label.select = list(top.up = 10, top.down = 4)}. \item
\code{criteria}: to filter, for example, by x and y variabes values, use
this: \code{label.select = list(criteria = "`y` > 2 & `y` < 5 & `x` \%in\%
c('A', 'B')")}. } }}

\item{repel}{a logical value, whether to use ggrepel to avoid overplotting
text labels or not.}

\item{label.rectangle}{logical value. If TRUE, add rectangle underneath the
text, making it easier to read.}

\item{position}{Position adjustment, either as a string, or the result of a
call to a position adjustment function. Allowed values include "identity",
"stack", "dodge".}

\item{ggtheme}{function, ggplot2 theme name. Default value is theme_pubr().
Allowed values include ggplot2 official themes: theme_gray(), theme_bw(),
theme_minimal(), theme_classic(), theme_void(), ....}

\item{...}{other arguments to be passed to
\code{\link[ggplot2]{geom_histogram}} and \code{\link{ggpar}}.}
}
\description{
Create a histogram plot.
}
\details{
The plot can be easily customized using the function ggpar(). Read
  ?ggpar for changing: \itemize{ \item main title and axis labels: main,
  xlab, ylab \item axis limits: xlim, ylim (e.g.: ylim = c(0, 30)) \item axis
  scales: xscale, yscale (e.g.: yscale = "log2") \item color palettes:
  palette = "Dark2" or palette = c("gray", "blue", "red") \item legend title,
  labels and position: legend = "right" \item plot orientation : orientation
  = c("vertical", "horizontal", "reverse") }
}
\examples{
# Create some data format
set.seed(1234)
wdata = data.frame(
   sex = factor(rep(c("F", "M"), each=200)),
   weight = c(rnorm(200, 55), rnorm(200, 58)))

head(wdata, 4)

# Basic density plot
# Add mean line and marginal rug
gghistogram(wdata, x = "weight", fill = "lightgray",
   add = "mean", rug = TRUE)

# Change outline colors by groups ("sex")
# Use custom color palette
gghistogram(wdata, x = "weight",
   add = "mean", rug = TRUE,
   color = "sex", palette = c("#00AFBB", "#E7B800"))

# Change outline and fill colors by groups ("sex")
# Use custom color palette
gghistogram(wdata, x = "weight",
   add = "mean", rug = TRUE,
   color = "sex", fill = "sex",
   palette = c("#00AFBB", "#E7B800"))



# Combine histogram and density plots
gghistogram(wdata, x = "weight",
   add = "mean", rug = TRUE,
   fill = "sex", palette = c("#00AFBB", "#E7B800"),
   add_density = TRUE)

# Weighted histogram
gghistogram(iris, x = "Sepal.Length", weight = "Petal.Length")
}
\seealso{
\code{\link{ggdensity}} and \code{\link{ggpar}}
}