1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/gghistogram.R
\name{gghistogram}
\alias{gghistogram}
\title{Histogram plot}
\usage{
gghistogram(
data,
x,
y = "count",
combine = FALSE,
merge = FALSE,
weight = NULL,
color = "black",
fill = NA,
palette = NULL,
size = NULL,
linetype = "solid",
alpha = 0.5,
bins = NULL,
binwidth = NULL,
title = NULL,
xlab = NULL,
ylab = NULL,
facet.by = NULL,
panel.labs = NULL,
short.panel.labs = TRUE,
add = c("none", "mean", "median"),
add.params = list(linetype = "dashed"),
rug = FALSE,
add_density = FALSE,
label = NULL,
font.label = list(size = 11, color = "black"),
label.select = NULL,
repel = FALSE,
label.rectangle = FALSE,
position = position_identity(),
ggtheme = theme_pubr(),
...
)
}
\arguments{
\item{data}{a data frame}
\item{x}{variable to be drawn.}
\item{y}{one of "density" or "count".}
\item{combine}{logical value. Default is FALSE. Used only when y is a vector
containing multiple variables to plot. If TRUE, create a multi-panel plot by
combining the plot of y variables.}
\item{merge}{logical or character value. Default is FALSE. Used only when y is
a vector containing multiple variables to plot. If TRUE, merge multiple y
variables in the same plotting area. Allowed values include also "asis"
(TRUE) and "flip". If merge = "flip", then y variables are used as x tick
labels and the x variable is used as grouping variable.}
\item{weight}{a variable name available in the input data for creating a weighted histogram.}
\item{color, fill}{histogram line color and fill color.}
\item{palette}{the color palette to be used for coloring or filling by groups.
Allowed values include "grey" for grey color palettes; brewer palettes e.g.
"RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and
scientific journal palettes from ggsci R package, e.g.: "npg", "aaas",
"lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty".}
\item{size}{Numeric value (e.g.: size = 1). change the size of points and
outlines.}
\item{linetype}{line type. See \code{\link{show_line_types}}.}
\item{alpha}{numeric value specifying fill color transparency. Value should
be in [0, 1], where 0 is full transparency and 1 is no transparency.}
\item{bins}{Number of bins. Defaults to 30.}
\item{binwidth}{numeric value specifying bin width. use value between 0 and 1
when you have a strong dense dotplot. For example binwidth = 0.2.}
\item{title}{plot main title.}
\item{xlab}{character vector specifying x axis labels. Use xlab = FALSE to
hide xlab.}
\item{ylab}{character vector specifying y axis labels. Use ylab = FALSE to
hide ylab.}
\item{facet.by}{character vector, of length 1 or 2, specifying grouping
variables for faceting the plot into multiple panels. Should be in the data.}
\item{panel.labs}{a list of one or two character vectors to modify facet panel
labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies
the labels for the "sex" variable. For two grouping variables, you can use
for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs",
"Lev", "Lev2") ).}
\item{short.panel.labs}{logical value. Default is TRUE. If TRUE, create short
labels for panels by omitting variable names; in other words panels will be
labelled only by variable grouping levels.}
\item{add}{allowed values are one of "mean" or "median" (for adding mean or
median line, respectively).}
\item{add.params}{parameters (color, size, linetype) for the argument 'add';
e.g.: add.params = list(color = "red").}
\item{rug}{logical value. If TRUE, add marginal rug.}
\item{add_density}{logical value. If TRUE, add density curves.}
\item{label}{the name of the column containing point labels. Can be also a
character vector with length = nrow(data).}
\item{font.label}{a list which can contain the combination of the following
elements: the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic",
"bold.italic") and the color (e.g.: "red") of labels. For example font.label
= list(size = 14, face = "bold", color ="red"). To specify only the size and
the style, use font.label = list(size = 14, face = "plain").}
\item{label.select}{can be of two formats: \itemize{ \item a character vector
specifying some labels to show. \item a list containing one or the
combination of the following components: \itemize{ \item \code{top.up} and
\code{top.down}: to display the labels of the top up/down points. For
example, \code{label.select = list(top.up = 10, top.down = 4)}. \item
\code{criteria}: to filter, for example, by x and y variabes values, use
this: \code{label.select = list(criteria = "`y` > 2 & `y` < 5 & `x` \%in\%
c('A', 'B')")}. } }}
\item{repel}{a logical value, whether to use ggrepel to avoid overplotting
text labels or not.}
\item{label.rectangle}{logical value. If TRUE, add rectangle underneath the
text, making it easier to read.}
\item{position}{Position adjustment, either as a string, or the result of a
call to a position adjustment function. Allowed values include "identity",
"stack", "dodge".}
\item{ggtheme}{function, ggplot2 theme name. Default value is theme_pubr().
Allowed values include ggplot2 official themes: theme_gray(), theme_bw(),
theme_minimal(), theme_classic(), theme_void(), ....}
\item{...}{other arguments to be passed to
\code{\link[ggplot2]{geom_histogram}} and \code{\link{ggpar}}.}
}
\description{
Create a histogram plot.
}
\details{
The plot can be easily customized using the function ggpar(). Read
?ggpar for changing: \itemize{ \item main title and axis labels: main,
xlab, ylab \item axis limits: xlim, ylim (e.g.: ylim = c(0, 30)) \item axis
scales: xscale, yscale (e.g.: yscale = "log2") \item color palettes:
palette = "Dark2" or palette = c("gray", "blue", "red") \item legend title,
labels and position: legend = "right" \item plot orientation : orientation
= c("vertical", "horizontal", "reverse") }
}
\examples{
# Create some data format
set.seed(1234)
wdata = data.frame(
sex = factor(rep(c("F", "M"), each=200)),
weight = c(rnorm(200, 55), rnorm(200, 58)))
head(wdata, 4)
# Basic density plot
# Add mean line and marginal rug
gghistogram(wdata, x = "weight", fill = "lightgray",
add = "mean", rug = TRUE)
# Change outline colors by groups ("sex")
# Use custom color palette
gghistogram(wdata, x = "weight",
add = "mean", rug = TRUE,
color = "sex", palette = c("#00AFBB", "#E7B800"))
# Change outline and fill colors by groups ("sex")
# Use custom color palette
gghistogram(wdata, x = "weight",
add = "mean", rug = TRUE,
color = "sex", fill = "sex",
palette = c("#00AFBB", "#E7B800"))
# Combine histogram and density plots
gghistogram(wdata, x = "weight",
add = "mean", rug = TRUE,
fill = "sex", palette = c("#00AFBB", "#E7B800"),
add_density = TRUE)
# Weighted histogram
gghistogram(iris, x = "Sepal.Length", weight = "Petal.Length")
}
\seealso{
\code{\link{ggdensity}} and \code{\link{ggpar}}
}
|