1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ggmaplot.R
\name{ggmaplot}
\alias{ggmaplot}
\title{MA-plot from means and log fold changes}
\usage{
ggmaplot(
data,
fdr = 0.05,
fc = 1.5,
genenames = NULL,
detection_call = NULL,
size = NULL,
alpha = 1,
seed = 42,
font.label = c(12, "plain", "black"),
label.rectangle = FALSE,
palette = c("#B31B21", "#1465AC", "darkgray"),
top = 15,
select.top.method = c("padj", "fc"),
label.select = NULL,
main = NULL,
xlab = "Log2 mean expression",
ylab = "Log2 fold change",
ggtheme = theme_classic(),
...
)
}
\arguments{
\item{data}{an object of class DESeqResults, get_diff, DE_Results, matrix or
data frame containing the columns baseMean (or baseMeanLog2),
log2FoldChange, and padj. Rows are genes.
Two possible formats are accepted for the input data: \itemize{ \item 1/
\code{baseMean | log2FoldChange | padj}. This is a typical output from
DESeq2 pipeline. Here, we'll use log2(baseMean) as the x-axis variable.
\item 2/ \code{baseMeanLog2 | log2FoldChange | padj}. Here, baseMeanLog2 is
assumed to be the mean of logged values; so we'll use it as the x-axis
variable without any transformation. This is the real A in MA plot. In other
words, it is the average of two log-scales values: \code{A = (log2(x) +
log2(y))/2 = log2(xy)*1/2} }
Terminology:
\itemize{ \item baseMean: the mean expression of genes in the two groups.
\item log2FoldChange: the log2 fold changes of group 2 compared to group 1
\item padj: the adjusted p-value of the used statiscal test. }}
\item{fdr}{Accepted false discovery rate for considering genes as
differentially expressed.}
\item{fc}{the fold change threshold. Only genes with a fold change >= fc and
padj <= fdr are considered as significantly differentially expressed.}
\item{genenames}{a character vector of length nrow(data) specifying gene names
corresponding to each row. Used for point labels.}
\item{detection_call}{a numeric vector with length = nrow(data), specifying if
the genes is expressed (value = 1) or not (value = 0). For example
detection_call = c(1, 1, 0, 1, 0, 1). Default is NULL. If detection_call
column is available in data, it will be used.}
\item{size}{points size.}
\item{alpha}{numeric value betwenn 0 an 1 specifying point alpha for
controlling transparency. For example, use alpha = 0.5.}
\item{seed}{Random seed passed to \code{set.seed}. if
\code{NA}, set.seed will not be called. Default is 42 for reproducibility.}
\item{font.label}{a vector of length 3 indicating respectively the size (e.g.:
14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the
color (e.g.: "red") of point labels. For example \emph{font.label = c(14,
"bold", "red")}.}
\item{label.rectangle}{logical value. If TRUE, add rectangle underneath the
text, making it easier to read.}
\item{palette}{the color palette to be used for coloring or filling by groups.
Allowed values include "grey" for grey color palettes; brewer palettes e.g.
"RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and
scientific journal palettes from ggsci R package, e.g.: "npg", "aaas",
"lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty".}
\item{top}{the number of top genes to be shown on the plot. Use top = 0 to
hide to gene labels.}
\item{select.top.method}{methods to be used for selecting top genes. Allowed
values include "padj" and "fc" for selecting by adjusted p values or fold
changes, respectively.}
\item{label.select}{character vector specifying some labels to show.}
\item{main}{plot main title.}
\item{xlab}{character vector specifying x axis labels. Use xlab = FALSE to
hide xlab.}
\item{ylab}{character vector specifying y axis labels. Use ylab = FALSE to
hide ylab.}
\item{ggtheme}{function, ggplot2 theme name. Default value is theme_pubr().
Allowed values include ggplot2 official themes: theme_gray(), theme_bw(),
theme_minimal(), theme_classic(), theme_void(), ....}
\item{...}{other arguments to be passed to \code{\link{ggpar}}.}
}
\value{
returns a ggplot.
}
\description{
Make MA-plot which is a scatter plot of log2 fold changes (M, on
the y-axis) versus the average expression signal (A, on the x-axis). \code{M
= log2(x/y)} and \code{A = (log2(x) + log2(y))/2 = log2(xy)*1/2}, where x
and y are respectively the mean of the two groups being compared.
}
\examples{
data(diff_express)
# Default plot
ggmaplot(diff_express, main = expression("Group 1" \%->\% "Group 2"),
fdr = 0.05, fc = 2, size = 0.4,
palette = c("#B31B21", "#1465AC", "darkgray"),
genenames = as.vector(diff_express$name),
legend = "top", top = 20,
font.label = c("bold", 11),
font.legend = "bold",
font.main = "bold",
ggtheme = ggplot2::theme_minimal())
# Add rectangle around labels
ggmaplot(diff_express, main = expression("Group 1" \%->\% "Group 2"),
fdr = 0.05, fc = 2, size = 0.4,
palette = c("#B31B21", "#1465AC", "darkgray"),
genenames = as.vector(diff_express$name),
legend = "top", top = 20,
font.label = c("bold", 11), label.rectangle = TRUE,
font.legend = "bold",
font.main = "bold",
ggtheme = ggplot2::theme_minimal())
# Select specific genes to show
# set top = 0, then specify genes using label.select argument
ggmaplot(diff_express, main = expression("Group 1" \%->\% "Group 2"),
fdr = 0.05, fc = 2, size = 0.4,
genenames = as.vector(diff_express$name),
ggtheme = ggplot2::theme_minimal(),
top = 0, label.select = c("BUB1", "CD83")
)
}
|