1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ggscatter.R
\name{ggscatter}
\alias{ggscatter}
\title{Scatter plot}
\usage{
ggscatter(
data,
x,
y,
combine = FALSE,
merge = FALSE,
color = "black",
fill = "lightgray",
palette = NULL,
shape = 19,
size = 2,
point = TRUE,
rug = FALSE,
title = NULL,
xlab = NULL,
ylab = NULL,
facet.by = NULL,
panel.labs = NULL,
short.panel.labs = TRUE,
add = c("none", "reg.line", "loess"),
add.params = list(),
conf.int = FALSE,
conf.int.level = 0.95,
fullrange = FALSE,
ellipse = FALSE,
ellipse.level = 0.95,
ellipse.type = "norm",
ellipse.alpha = 0.1,
ellipse.border.remove = FALSE,
mean.point = FALSE,
mean.point.size = ifelse(is.numeric(size), 2 * size, size),
star.plot = FALSE,
star.plot.lty = 1,
star.plot.lwd = NULL,
label = NULL,
font.label = c(12, "plain"),
font.family = "",
label.select = NULL,
repel = FALSE,
label.rectangle = FALSE,
parse = FALSE,
cor.coef = FALSE,
cor.coeff.args = list(),
cor.method = "pearson",
cor.coef.coord = c(NULL, NULL),
cor.coef.size = 4,
ggp = NULL,
show.legend.text = NA,
ggtheme = theme_pubr(),
...
)
}
\arguments{
\item{data}{a data frame}
\item{x}{x variables for drawing.}
\item{y}{y variables for drawing.}
\item{combine}{logical value. Default is FALSE. Used only when y is a vector
containing multiple variables to plot. If TRUE, create a multi-panel plot by
combining the plot of y variables.}
\item{merge}{logical or character value. Default is FALSE. Used only when y is
a vector containing multiple variables to plot. If TRUE, merge multiple y
variables in the same plotting area. Allowed values include also "asis"
(TRUE) and "flip". If merge = "flip", then y variables are used as x tick
labels and the x variable is used as grouping variable.}
\item{color, fill}{point colors.}
\item{palette}{the color palette to be used for coloring or filling by groups.
Allowed values include "grey" for grey color palettes; brewer palettes e.g.
"RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and
scientific journal palettes from ggsci R package, e.g.: "npg", "aaas",
"lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty".}
\item{shape}{point shape. See \code{\link{show_point_shapes}}.}
\item{size}{Numeric value (e.g.: size = 1). change the size of points and
outlines.}
\item{point}{logical value. If TRUE, show points.}
\item{rug}{logical value. If TRUE, add marginal rug.}
\item{title}{plot main title.}
\item{xlab}{character vector specifying x axis labels. Use xlab = FALSE to
hide xlab.}
\item{ylab}{character vector specifying y axis labels. Use ylab = FALSE to
hide ylab.}
\item{facet.by}{character vector, of length 1 or 2, specifying grouping
variables for faceting the plot into multiple panels. Should be in the data.}
\item{panel.labs}{a list of one or two character vectors to modify facet panel
labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies
the labels for the "sex" variable. For two grouping variables, you can use
for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs",
"Lev", "Lev2") ).}
\item{short.panel.labs}{logical value. Default is TRUE. If TRUE, create short
labels for panels by omitting variable names; in other words panels will be
labelled only by variable grouping levels.}
\item{add}{allowed values are one of "none", "reg.line" (for adding linear
regression line) or "loess" (for adding local regression fitting).}
\item{add.params}{parameters (color, size, linetype) for the argument 'add';
e.g.: add.params = list(color = "red").}
\item{conf.int}{logical value. If TRUE, adds confidence interval.}
\item{conf.int.level}{Level controlling confidence region. Default is 95\%.
Used only when add != "none" and conf.int = TRUE.}
\item{fullrange}{should the fit span the full range of the plot, or just the
data. Used only when add != "none".}
\item{ellipse}{logical value. If TRUE, draws ellipses around points.}
\item{ellipse.level}{the size of the concentration ellipse in normal
probability.}
\item{ellipse.type}{Character specifying frame type. Possible values are
\code{"convex"}, \code{"confidence"} or types supported by
\code{\link[ggplot2]{stat_ellipse}()} including one of \code{c("t", "norm",
"euclid")} for plotting concentration ellipses.
\itemize{ \item \code{"convex"}: plot convex hull of a set o points. \item
\code{"confidence"}: plot confidence ellipses arround group mean points as
\code{FactoMineR::coord.ellipse()}. \item \code{"t"}:
assumes a multivariate t-distribution. \item \code{"norm"}: assumes a
multivariate normal distribution. \item \code{"euclid"}: draws a circle with
the radius equal to level, representing the euclidean distance from the
center. This ellipse probably won't appear circular unless
\code{\link[ggplot2]{coord_fixed}()} is applied.}}
\item{ellipse.alpha}{Alpha for ellipse specifying the transparency level of
fill color. Use alpha = 0 for no fill color.}
\item{ellipse.border.remove}{logical value. If TRUE, remove ellipse border lines.}
\item{mean.point}{logical value. If TRUE, group mean points are added to the
plot.}
\item{mean.point.size}{numeric value specifying the size of mean points.}
\item{star.plot}{logical value. If TRUE, a star plot is generated.}
\item{star.plot.lty, star.plot.lwd}{line type and line width (size) for star
plot, respectively.}
\item{label}{the name of the column containing point labels. Can be also a
character vector with length = nrow(data).}
\item{font.label}{a vector of length 3 indicating respectively the size
(e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and
the color (e.g.: "red") of point labels. For example \emph{font.label =
c(14, "bold", "red")}. To specify only the size and the style, use
font.label = c(14, "plain").}
\item{font.family}{character vector specifying font family.}
\item{label.select}{character vector specifying some labels to show.}
\item{repel}{a logical value, whether to use ggrepel to avoid overplotting
text labels or not.}
\item{label.rectangle}{logical value. If TRUE, add rectangle underneath the
text, making it easier to read.}
\item{parse}{If \code{TRUE}, the labels will be parsed into expressions and
displayed as described in \code{?plotmath}.}
\item{cor.coef}{logical value. If TRUE, correlation coefficient with the
p-value will be added to the plot.}
\item{cor.coeff.args}{a list of arguments to pass to the function
\code{\link{stat_cor}} for customizing the displayed correlation
coefficients. For example: \code{cor.coeff.args = list(method = "pearson",
label.x.npc = "right", label.y.npc = "top")}.}
\item{cor.method}{method for computing correlation coefficient. Allowed
values are one of "pearson", "kendall", or "spearman".}
\item{cor.coef.coord}{numeric vector, of length 2, specifying the x and y
coordinates of the correlation coefficient. Default values are NULL.}
\item{cor.coef.size}{correlation coefficient text font size.}
\item{ggp}{a ggplot. If not NULL, points are added to an existing plot.}
\item{show.legend.text}{logical. Should text be included in the legends? NA,
the default, includes if any aesthetics are mapped. FALSE never includes,
and TRUE always includes.}
\item{ggtheme}{function, ggplot2 theme name. Default value is theme_pubr().
Allowed values include ggplot2 official themes: theme_gray(), theme_bw(),
theme_minimal(), theme_classic(), theme_void(), ....}
\item{...}{other arguments to be passed to \code{\link[ggplot2]{geom_point}}
and \code{\link{ggpar}}.}
}
\description{
Create a scatter plot.
}
\details{
The plot can be easily customized using the function ggpar(). Read
?ggpar for changing: \itemize{ \item main title and axis labels: main,
xlab, ylab \item axis limits: xlim, ylim (e.g.: ylim = c(0, 30)) \item axis
scales: xscale, yscale (e.g.: yscale = "log2") \item color palettes:
palette = "Dark2" or palette = c("gray", "blue", "red") \item legend title,
labels and position: legend = "right" \item plot orientation : orientation
= c("vertical", "horizontal", "reverse") }
}
\examples{
# Load data
data("mtcars")
df <- mtcars
df$cyl <- as.factor(df$cyl)
head(df[, c("wt", "mpg", "cyl")], 3)
# Basic plot
# +++++++++++++++++++++++++++
ggscatter(df, x = "wt", y = "mpg",
color = "black", shape = 21, size = 3, # Points color, shape and size
add = "reg.line", # Add regressin line
add.params = list(color = "blue", fill = "lightgray"), # Customize reg. line
conf.int = TRUE, # Add confidence interval
cor.coef = TRUE, # Add correlation coefficient. see ?stat_cor
cor.coeff.args = list(method = "pearson", label.x = 3, label.sep = "\n")
)
# loess method: local regression fitting
ggscatter(df, x = "wt", y = "mpg",
add = "loess", conf.int = TRUE)
# Control point size by continuous variable values ("qsec")
ggscatter(df, x = "wt", y = "mpg",
color = "#00AFBB", size = "qsec")
# Change colors
# +++++++++++++++++++++++++++
# Use custom color palette
# Add marginal rug
ggscatter(df, x = "wt", y = "mpg", color = "cyl",
palette = c("#00AFBB", "#E7B800", "#FC4E07") )
# Add group ellipses and mean points
# Add stars
# +++++++++++++++++++
ggscatter(df, x = "wt", y = "mpg",
color = "cyl", shape = "cyl",
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
ellipse = TRUE, mean.point = TRUE,
star.plot = TRUE)
# Textual annotation
# +++++++++++++++++
df$name <- rownames(df)
ggscatter(df, x = "wt", y = "mpg",
color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"),
label = "name", repel = TRUE)
}
\seealso{
\code{\link{stat_cor}}, \code{\link{stat_stars}}, \code{\link{stat_conf_ellipse}} and \code{\link{ggpar}}.
}
|