1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/stat_anova_test.R
\name{stat_anova_test}
\alias{stat_anova_test}
\title{Add Anova Test P-values to a GGPlot}
\usage{
stat_anova_test(
mapping = NULL,
data = NULL,
method = c("one_way", "one_way_repeated", "two_way", "two_way_repeated",
"two_way_mixed"),
wid = NULL,
group.by = NULL,
type = NULL,
effect.size = "ges",
error = NULL,
correction = c("auto", "GG", "HF", "none"),
label = "{method}, p = {p.format}",
label.x.npc = "left",
label.y.npc = "top",
label.x = NULL,
label.y = NULL,
step.increase = 0.1,
p.adjust.method = "holm",
significance = list(),
geom = "text",
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
parse = FALSE,
...
)
}
\arguments{
\item{mapping}{Set of aesthetic mappings created by \code{\link[ggplot2:aes]{aes()}}. If specified and
\code{inherit.aes = TRUE} (the default), it is combined with the default mapping
at the top level of the plot. You must supply \code{mapping} if there is no plot
mapping.}
\item{data}{The data to be displayed in this layer. There are three
options:
If \code{NULL}, the default, the data is inherited from the plot
data as specified in the call to \code{\link[ggplot2:ggplot]{ggplot()}}.
A \code{data.frame}, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
\code{\link[ggplot2:fortify]{fortify()}} for which variables will be created.
A \code{function} will be called with a single argument,
the plot data. The return value must be a \code{data.frame}, and
will be used as the layer data. A \code{function} can be created
from a \code{formula} (e.g. \code{~ head(.x, 10)}).}
\item{method}{ANOVA test methods. Possible values are one of
\code{c("one_way", "one_way_repeated", "two_way", "two_way_repeated",
"two_way_mixed")}.}
\item{wid}{(factor) column name containing individuals/subjects identifier.
Should be unique per individual. Required only for repeated measure tests
(\code{"one_way_repeated", "two_way_repeated", "friedman_test", etc}).}
\item{group.by}{(optional) character vector specifying the grouping variable;
it should be used only for grouped plots. Possible values are : \itemize{
\item \code{"x.var"}: Group by the x-axis variable and perform the test
between legend groups. In other words, the p-value is compute between legend
groups at each x position \item \code{"legend.var"}: Group by the legend
variable and perform the test between x-axis groups. In other words, the
test is performed between the x-groups for each legend level. }}
\item{type}{the type of sums of squares for ANOVA. Allowed values are either
1, 2 or 3. \code{type = 2} is the default because this will yield identical
ANOVA results as type = 1 when data are balanced but type = 2 will
additionally yield various assumption tests where appropriate. When the data
are unbalanced the \code{type = 3} is used by popular commercial softwares
including SPSS.}
\item{effect.size}{the effect size to compute and to show in the ANOVA
results. Allowed values can be either "ges" (generalized eta squared) or
"pes" (partial eta squared) or both. Default is "ges".}
\item{error}{(optional) for a linear model, an lm model object from which the
overall error sum of squares and degrees of freedom are to be calculated.
Read more in \code{\link[car]{Anova}()} documentation.}
\item{correction}{character. Used only in repeated measures ANOVA test to
specify which correction of the degrees of freedom should be reported for
the within-subject factors. Possible values are: \itemize{ \item{"GG"}:
applies Greenhouse-Geisser correction to all within-subjects factors even if
the assumption of sphericity is met (i.e., Mauchly's test is not
significant, p > 0.05). \item{"HF"}: applies Hyunh-Feldt correction to all
within-subjects factors even if the assumption of sphericity is met,
\item{"none"}: returns the ANOVA table without any correction and
\item{"auto"}: apply automatically GG correction to only within-subjects
factors violating the sphericity assumption (i.e., Mauchly's test p-value is
significant, p <= 0.05). }}
\item{label}{character string specifying label. Can be: \itemize{ \item the
column containing the label (e.g.: \code{label = "p"} or \code{label =
"p.adj"}), where \code{p} is the p-value. Other possible values are
\code{"p.signif", "p.adj.signif", "p.format", "p.adj.format"}. \item an
expression that can be formatted by the \code{\link[glue]{glue}()} package.
For example, when specifying \code{label = "Anova, p = \{p\}"}, the
expression \{p\} will be replaced by its value. \item a combination of
plotmath expressions and glue expressions. You may want some of the
statistical parameter in italic; for example:\code{label = "Anova, italic(p)
= {p}"}. \item a constant: \code{label = "as_italic"}: display statistical
parameters in italic; \code{label = "as_detailed"}: detailed plain text;
\code{label = "as_detailed_expression"} or \code{label =
"as_detailed_italic"}: detailed plotmath expression. Statistical parameters
will be displayed in italic.}.}
\item{label.x.npc, label.y.npc}{can be \code{numeric} or \code{character}
vector of the same length as the number of groups and/or panels. If too
short they will be recycled. \itemize{ \item If \code{numeric}, value should
be between 0 and 1. Coordinates to be used for positioning the label,
expressed in "normalized parent coordinates". \item If \code{character},
allowed values include: i) one of c('right', 'left', 'center', 'centre',
'middle') for x-axis; ii) and one of c( 'bottom', 'top', 'center', 'centre',
'middle') for y-axis.}}
\item{label.x, label.y}{\code{numeric} Coordinates (in data units) to be used
for absolute positioning of the label. If too short they will be recycled.}
\item{step.increase}{numeric value in with the increase in fraction of total
height for every additional comparison to minimize overlap. The step value
can be negative to reverse the order of groups.}
\item{p.adjust.method}{method for adjusting p values (see
\code{\link[stats]{p.adjust}}). Has impact only in a situation, where
multiple pairwise tests are performed; or when there are multiple grouping
variables. Allowed values include "holm", "hochberg", "hommel",
"bonferroni", "BH", "BY", "fdr", "none". If you don't want to adjust the p
value (not recommended), use p.adjust.method = "none".}
\item{significance}{a list of arguments specifying the signifcance cutpoints
and symbols. For example, \code{significance <- list(cutpoints = c(0,
0.0001, 0.001, 0.01, 0.05, Inf), symbols = c("****", "***", "**", "*",
"ns"))}.
In other words, we use the following convention for symbols indicating
statistical significance: \itemize{ \item \code{ns}: p > 0.05 \item
\code{*}: p <= 0.05 \item \code{**}: p <= 0.01 \item \code{***}: p <= 0.001
\item \code{****}: p <= 0.0001 }}
\item{geom}{The geometric object to use to display the data, either as a
\code{ggproto} \code{Geom} subclass or as a string naming the geom stripped of the
\code{geom_} prefix (e.g. \code{"point"} rather than \code{"geom_point"})}
\item{position}{Position adjustment, either as a string naming the adjustment
(e.g. \code{"jitter"} to use \code{position_jitter}), or the result of a call to a
position adjustment function. Use the latter if you need to change the
settings of the adjustment.}
\item{na.rm}{If FALSE (the default), removes missing values with a warning. If
TRUE silently removes missing values.}
\item{show.legend}{logical. Should this layer be included in the legends?
\code{NA}, the default, includes if any aesthetics are mapped.
\code{FALSE} never includes, and \code{TRUE} always includes.
It can also be a named logical vector to finely select the aesthetics to
display.}
\item{inherit.aes}{If \code{FALSE}, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. \code{\link[ggplot2:borders]{borders()}}.}
\item{parse}{If TRUE, the labels will be parsed into expressions and displayed
as described in \code{?plotmath}.}
\item{...}{other arguments to pass to
\code{\link[ggplot2:geom_text]{geom_text}}, such as:\itemize{ \item
\code{hjust}: horizontal justification of the text. Move the text left or
right and \item \code{vjust}: vertical justification of the text. Move the
text up or down. }}
}
\description{
Adds automatically one-way and two-way ANOVA test p-values to a
ggplot, such as box blots, dot plots and stripcharts.
}
\section{Computed variables}{
\itemize{ \item{DFn}: Degrees of Freedom in the
numerator (i.e. DF effect). \item{DFd}: Degrees of Freedom in the
denominator (i.e., DF error). \item{ges}: Generalized Eta-Squared measure of
effect size. Computed only when the option \code{effect.size = "ges"}.
\item{pes}: Partial Eta-Squared measure of effect size. Computed only when
the option \code{effect.size = "pes"}. \item{F}: F-value. \item{p}: p-value.
\item{p.adj}: Adjusted p-values. \item{p.signif}: P-value significance.
\item{p.adj.signif}: Adjusted p-value significance. \item{p.format}:
Formated p-value. \item{p.adj.format}: Formated adjusted p-value. \item{n}:
number of samples. }
}
\examples{
# Data preparation
#\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
# Transform `dose` into factor variable
df <- ToothGrowth
df$dose <- as.factor(df$dose)
# Add individuals id
df$id <- rep(1:10, 6)
# Add a random grouping variable
set.seed(123)
df$group <- sample(factor(rep(c("grp1", "grp2", "grp3"), 20)))
df$len <- ifelse(df$group == "grp2", df$len+2, df$len)
df$len <- ifelse(df$group == "grp3", df$len+7, df$len)
head(df, 3)
# Basic boxplot
#\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
# Create a basic boxplot
# Add 5\% and 10\% space to the plot bottom and the top, respectively
bxp <- ggboxplot(df, x = "dose", y = "len") +
scale_y_continuous(expand = expansion(mult = c(0.05, 0.1)))
# Add the p-value to the boxplot
bxp + stat_anova_test()
\dontrun{
# Change the label position
# Using coordinates in data units
bxp + stat_anova_test(label.x = "1", label.y = 10, hjust = 0)
}
# Format the p-value differently
custom_p_format <- function(p) {
rstatix::p_format(p, accuracy = 0.0001, digits = 3, leading.zero = FALSE)
}
bxp + stat_anova_test(
label = "Anova, italic(p) = {custom_p_format(p)}{p.signif}"
)
# Show a detailed label in italic
bxp + stat_anova_test(label = "as_detailed_italic")
# Faceted plots
#\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
# Create a ggplot facet
bxp <- ggboxplot(df, x = "dose", y = "len", facet.by = "supp") +
scale_y_continuous(expand = expansion(mult = c(0.05, 0.1)))
# Add p-values
bxp + stat_anova_test()
# Grouped plots
#\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
bxp2 <- ggboxplot(df, x = "group", y = "len", color = "dose", palette = "npg")
# For each x-position, computes tests between legend groups
bxp2 + stat_anova_test(aes(group = dose), label = "p = {p.format}{p.signif}")
# For each legend group, computes tests between x variable groups
bxp2 + stat_anova_test(aes(group = dose, color = dose), group.by = "legend.var")
\dontrun{
# Two-way ANOVA: Independent measures
#\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
# Visualization: box plots with p-values
# Two-way interaction p-values between x and legend (group) variables
bxp3 <- ggboxplot(
df, x = "supp", y = "len",
color = "dose", palette = "jco"
)
bxp3 + stat_anova_test(aes(group = dose), method = "two_way")
# One-way repeatead measures ANOVA
#\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
df$id <- as.factor(c(rep(1:10, 3), rep(11:20, 3)))
ggboxplot(df, x = "dose", y = "len") +
stat_anova_test(method = "one_way_repeated", wid = "id")
# Two-way repeatead measures ANOVA
#\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
df$id <- as.factor(rep(1:10, 6))
ggboxplot(df, x = "dose", y = "len", color = "supp", palette = "jco") +
stat_anova_test(aes(group = supp), method = "two_way_repeated", wid = "id")
# Grouped one-way repeated measures ANOVA
ggboxplot(df, x = "dose", y = "len", color = "supp", palette = "jco") +
stat_anova_test(aes(group = supp, color = supp),
method = "one_way_repeated", wid = "id", group.by = "legend.var")
}
}
|