1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
#' Show edges as a density map
#'
#' This geom makes it possible to add a layer showing edge presence as a density
#' map. Each edge is converted to `n` points along the line and a jitter is
#' applied. Based on this dataset a two-dimensional kernel density estimation is
#' applied and plotted as a raster image. The density is mapped to the alpha
#' level, making it possible to map a variable to the fill.
#'
#' @inheritSection geom_edge_link Edge aesthetic name expansion
#'
#' @section Aesthetics:
#' `geom_edge_density` understand the following aesthetics. Bold aesthetics are
#' automatically set, but can be overwritten.
#'
#' **x**
#' **y**
#' **xend**
#' **yend**
#' edge_fill
#' filter
#'
#'
#' @section Computed variables:
#'
#' \describe{
#' \item{x, y}{The coordinates for each pixel in the raster}
#' \item{density}{The density associated with the pixel}
#' }
#'
#' @inheritParams geom_edge_link
#' @inheritParams ggplot2::geom_raster
#'
#' @param n The number of points to estimate in the x and y direction, i.e. the
#' resolution of the raster.
#'
#' @author Thomas Lin Pedersen
#'
#' @family geom_edge_*
#'
#' @examples
#' require(tidygraph)
#' gr <- create_notable('bull') %>%
#' activate(edges) %>%
#' mutate(class = sample(letters[1:3], n(), replace = TRUE))
#'
#' ggraph(gr, 'stress') +
#' geom_edge_density(aes(fill = class)) +
#' geom_edge_link() + geom_node_point()
#' @rdname geom_edge_density
#' @name geom_edge_density
#'
NULL
#' @rdname ggraph-extensions
#' @format NULL
#' @usage NULL
#' @importFrom ggforce StatLink
#' @importFrom MASS bandwidth.nrd kde2d
#' @export
StatEdgeDensity <- ggproto('StatEdgeDensity', Stat,
compute_group = function(data, scales, na.rm = FALSE, h = NULL,
n = 100, bins = NULL, binwidth = NULL) {
group <- data$group[1]
x_range <- diff(range(c(data$x, data$xend)))
y_range <- diff(range(c(data$y, data$yend)))
x_extend <- x_range / 10
y_extend <- y_range / 10
data <- StatLink$compute_panel(data, n = 50)
data <- PositionJitter$compute_layer(data, list(
width = x_extend,
height = y_extend
))
if (is.null(h)) {
h <- c(MASS::bandwidth.nrd(data$x), MASS::bandwidth.nrd(data$y))
}
dens <- MASS::kde2d(data$x, data$y,
h = h, n = n,
lims = c(
scales$x$dimension(),
scales$y$dimension()
) + c(
-x_extend,
x_extend,
-y_extend,
y_extend
)
)
df <- expand.grid(x = dens$x, y = dens$y)
df$z <- as.vector(dens$z)
df$group <- group
names(df) <- c('x', 'y', 'density', 'group')
df
},
setup_data = function(data, params) {
StatFilter$setup_data(data, params)
},
default_aes = aes(filter = TRUE),
required_aes = c('x', 'y', 'xend', 'yend')
)
#' @rdname ggraph-extensions
#' @format NULL
#' @usage NULL
#' @importFrom grid gTree gList grobName rasterGrob rectGrob gpar
GeomEdgeDensity <- ggproto('GeomEdgeDensity', GeomRaster,
draw_panel = function(self, data, panel_scales, coord, ...) {
groups <- split(data, factor(data$group))
max_density <- max(rowSums(inject(cbind(!!!lapply(groups, `[[`, i = 'density')))))
grobs <- lapply(groups, function(group) {
self$draw_group(group, panel_scales, coord,
max.alpha = max_density,
...
)
})
grobs <- gTree(children = inject(gList(!!!grobs)))
grobs$name <- grobName(grobs, 'geom_edge_density')
grobs
},
draw_group = function(self, data, panel_scales, coord, max.alpha) {
if (!inherits(coord, 'CoordCartesian')) {
cli::cli_abort('{.fn {snake_class(self)}} only works with {.fn coord_cartesian')
}
data <- coord$transform(data, panel_scales)
x_pos <- as.integer((data$x - min(data$x)) / resolution(
data$x,
FALSE
))
y_pos <- as.integer((data$y - min(data$y)) / resolution(
data$y,
FALSE
))
nrow <- max(y_pos) + 1
ncol <- max(x_pos) + 1
raster <- matrix(NA_character_, nrow = nrow, ncol = ncol)
raster[cbind(nrow - y_pos, x_pos + 1)] <- alpha(
data$edge_fill,
data$density / max.alpha
)
x_rng <- c(min(data$xmin, na.rm = TRUE), max(data$xmax, na.rm = TRUE))
y_rng <- c(min(data$ymin, na.rm = TRUE), max(data$ymax, na.rm = TRUE))
rasterGrob(raster,
x = mean(x_rng), y = mean(y_rng),
width = diff(x_rng), height = diff(y_rng),
default.units = 'native', interpolate = TRUE
)
},
draw_key = function(data, params, size) {
rectGrob(gp = gpar(
col = NA,
fill = alpha(data$edge_fill %||% data$fill %||% "darkgrey"),
lty = 0
))
},
required_aes = c('x', 'y'),
default_aes = aes(edge_fill = 'darkgrey')
)
#' @rdname geom_edge_density
#'
#' @importFrom ggforce StatLink
#' @export
geom_edge_density <- function(mapping = NULL, data = get_edges('short'),
position = 'identity', show.legend = NA,
n = 100, ...) {
mapping <- complete_edge_aes(mapping)
mapping <- aes_intersect(mapping, aes(x = x, y = y,
xend = xend, yend = yend))
layer(
data = data, mapping = mapping, stat = StatEdgeDensity,
geom = GeomEdgeDensity, position = position,
show.legend = show.legend, inherit.aes = FALSE,
params = expand_edge_aes(
list2(n = n, ...)
)
)
}
|