File: heights.r

package info (click to toggle)
r-cran-ggseqlogo 0.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 908 kB
  • sloc: makefile: 2
file content (399 lines) | stat: -rw-r--r-- 11,463 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Namespaces
.AA_NAMESPACE = function() c('A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V')
.DNA_NAMESPACE = function() c('A', 'T', 'G', 'C')
.RNA_NAMESPACE = function() c('A', 'U', 'G', 'C')

# Generate letter matrix from vector of sequences
# 
# @param input vector of sequences
letterMatrix <- function(input){
  # Ensure kmers are the same length characters 
  seq.len = sapply(input, nchar)
  num_pos = seq.len[1]
  if(! all(seq.len == num_pos)) stop('Sequences in alignment must have identical lengths')
  
  # Construct matrix of letters
  split = unlist( sapply(input, function(seq){strsplit(seq, '')}) )
  
  t( matrix(split, seq.len, length(split)/num_pos) )
}

# Guess sequence type based on letter matrix
# 
# @param sp letters
guessSeqType <- function(sp){
  # Ensure we have something
  if(length( intersect(sp, c(.AA_NAMESPACE(), .DNA_NAMESPACE(),.RNA_NAMESPACE())) ) == 0)
    stop('Could not get guess seq_type. Please explicitly define sequence type or use "other" with custom namespaces.')
  
  dat = setdiff(intersect(sp, .AA_NAMESPACE()), c(.DNA_NAMESPACE(),.RNA_NAMESPACE()))
  if(length(dat) > 0){
    return('AA')
  }else if('U' %in% sp){
    return('RNA')
  }
  return('DNA')
}


# Find namespace
# 
# @param letter_mat Matrix of latters
# @param seq_type Sequence type
# @param namespace Alphabet
findNamespace <- function(letter_mat, seq_type, namespace){
  
  # Get all letters in our alignment
  sp = as.character(letter_mat)
  
  # Other namespace
  if(seq_type == "other"){
    if(is.null(namespace)) 
      stop('seq_type of "other" must have a defined namespace')
    
    namespace = as.character(namespace)
    # Get unique
    namespace = unique( unlist(strsplit(namespace, '')) )
    
    
    # Validate
    non_alphanumeric = grepl('[^a-zA-Z0-9\u03b1\u03b2\u0393\u03b3\u0394\u03b4\u03b5\u03b6\u03b7\u03b8\u0398\u03b9\u03ba\u039b\u039b\u03bc\u039e\u03be\u03a0\u03c0\u03c1\u03c3\u03c4\u03c5\u03a6\u03c6\u03c7\u03c8\u03a8\u03a9\u03c9]', namespace)
    if( any( non_alphanumeric ) )
      stop('All letters in the namespace must be alphanumeric')
    
    # Ensure there is something in each column
    # apply(letter_mat, 2, function(column_letters){
    #   int = intersect(namespace, column_letters)
    #   if(length(int) == 0)
    #     stop('The alignment has no letters in namespace match aligned sequences in at least one column')
    # })
    
  }else{
    if(!is.null(namespace)) 
      stop('For custom namespaces please set seq_type to "other"')
    
    # Guess sequence type
    if(seq_type == "auto")
      seq_type = guessSeqType(sp)
    
    # Get predefined namespace
    namespace = get( sprintf('.%s_NAMESPACE', toupper(seq_type)) )()
  }
  
  return(list(seq_type = toupper(seq_type), 
              namespace = namespace))
}

# Calcualte bits
#
# @param pwm Position weight matrix
# @param N Number of letters in namespace
# @param Nseqs Number of sequences in PWM
computeBits <- function(pwm, N=4, Nseqs=NULL){
  Nseqs = attr(pwm, 'nongapped')
  H_i = - apply(pwm, 2, function(col) sum(col * log2(col), na.rm=T))
  e_n = 0
  if(!is.null(Nseqs)) e_n = (1/logb(2)) * (N-1)/(2*Nseqs) 
 
  R_i = log2(N) - (H_i  + e_n)
  # Set any negatives to 0
  R_i = pmax(R_i, 0)
  return(R_i)
}

# Construct relative frequency matrix
# @param seqs aligned sequences as vector
# @param seq_type sequence type
# @param namespace letters used for matrix construction
# @param keep_letter_mat Keep letter matrix for some height methods
makePFM <- function(seqs, seq_type='auto', namespace=NULL, keep_letter_mat=F){
  
  letter_mat = NA
  if(is.matrix(seqs)){
    # Process matrix
    if(is.null(rownames(seqs))) stop('Matrix must have letters for row names')
    
    num_pos = ncol(seqs)
    
    # Get namespace
    ns = findNamespace(rownames(seqs), seq_type, namespace)
    namespace = ns$namespace
    seq_type = ns$seq_type
    
    nseqs = NULL
    
    bg_prob = NA
    pfm_mat = seqs
    pfm_mat = apply(pfm_mat, 2, function(x) x / sum(x, na.rm=T))
    
    missing_rows = setdiff(namespace, rownames(pfm_mat))
    
    if(length(missing_rows) > 0){
      miss = matrix(rep(0, length(missing_rows) * ncol(pfm_mat)), nrow=length(missing_rows), dimnames = list(missing_rows))
      pfm_mat = rbind(pfm_mat, miss)
    }
    
    pfm_mat = pfm_mat[namespace,]

  }else{
    # Process sequences
    
    # Number of positions in alignment
    num_pos = nchar(seqs[1])
    # Number of sequences
    nseqs = length(seqs)
    # Letter matrix
    letter_mat = letterMatrix(seqs)
    
    
    # Get namespace
    ns = findNamespace(letter_mat, seq_type, namespace=namespace)
    namespace = ns$namespace
    seq_type = ns$seq_type
    
    # Construct PWM
    pfm_mat = apply(letter_mat, 2, function(pos.data){
      # Get frequencies 
      t = table(pos.data)
      # Match to aa
      ind = match(namespace, names(t))
      # Create column
      col = t[ind]
      col[is.na(col)] = 0
      names(col) = namespace
      # Do relative frequencies
      col = col / sum(col)
      col
    })
    
    mat = matrix((letter_mat %in% namespace), nrow=nrow(letter_mat))
    attr(pfm_mat, 'nongapped') = apply(mat, 2, sum)
    attr(pfm_mat, 'nseqs') = nseqs
  }
  
  # Number of letters in ns
  N = length(namespace)
  
  # Assign seq type and namespace as attributes
  attr(pfm_mat, 'seq_type') = seq_type
  attr(pfm_mat, 'namespace') = namespace

  # Non-gapped columns
  if(seq_type == 'aa') namespace = c(namespace, 'X', 'B', 'Z')

  # Information content
  attr(pfm_mat, 'bits') = computeBits(pfm_mat, N, nseqs)
  
  # Assign AA names to rows/pos col
  rownames(pfm_mat) = namespace
  colnames(pfm_mat) = 1:num_pos
  
  if(keep_letter_mat) return(list(letter_mat = letter_mat, pfm=pfm_mat))

  return(pfm_mat)
}



######################
# Matrix to heights
######################

# General function to convert matrix of heights to polygon data frame 
# @param mat matrix of heghts
# @param seq_type sequence type
# @decreasing Sets order of letters, high to low or low to high
matrix_to_heights <- function(mat, seq_type, decreasing=T){
  
  mat[is.infinite(mat)] = 0 
  
  if(any(duplicated(rownames(mat)))) stop('Matrix input must have unique row names')
  
  dat = lapply(1:ncol(mat), function(i){
    vals = mat[,i]
    
    pos = sort( vals[vals >= 0], decreasing = decreasing)
    neg = sort(vals[vals < 0], decreasing = !decreasing)
    #vals = sort(vals, decreasing = T)
    cs_pos = cumsum( pos )
    cs_neg = cumsum( neg )
    
    df_pos = df_neg = NULL
    
    if(length(pos) > 0)
      df_pos = data.frame(letter=names(pos), position=i,  y0=c(0, cs_pos[-length(cs_pos)]), 
                          y1=cs_pos, stringsAsFactors = F)
    
    if(length(neg) > 0)
      df_neg = data.frame(letter=names(neg), position=i, y0=cs_neg, y1=c(0, cs_neg[-length(cs_neg)]), 
                          stringsAsFactors = F)
    
    rbind(df_pos, df_neg)
  })

  dat = do.call(rbind, dat)

  # Adjust y spacing 
  space_factor = 0.004
  y_pad = max(dat$y1) * space_factor
  dat$y0 = dat$y0 + y_pad
  dat = subset(dat, dat$y1 > dat$y0)
  
  # Dummy points to make sure full plot is drawn
  # Make sure position 1 and n have a dummy empty letter missing
  dummy = data.frame(letter=dat$letter[1], position=NA, y0=0, y1=0)
  
  # Missing first position
  if(dat$position[1] != 1){
    dummy$position = 1
    dat = rbind( dummy, dat )
  }
  
  # Missing last position
  if(dat$position[nrow(dat)] != ncol(mat)){
    dummy$position = ncol(mat)
    dat = rbind( dat, dummy )
  }

  rownames(dat) = NULL
  
  attr(dat, 'seq_type') = seq_type
  
  dat
}



# Shannon entropy method
bits_method <- function(seqs, decreasing, ...){
  # Make PFM
  pfm = makePFM(seqs, ...)

  # Get ic
  ic = attr(pfm, 'bits')
  if(all(ic == 0)){
    warning('All positions have zero information content perhaps due to too few input sequences. Setting all information content to 2.')
    ic = (ic * 0)+2
  }
  heights = t(t(pfm) * ic)

  seq_type = attr(pfm, 'seq_type')
  matrix_to_heights(heights, seq_type, decreasing)
} 

# Probability method
probability_method <- function(seqs, decreasing, ...){
  # Make PFM
  pfm = makePFM(seqs, ...)
  seq_type = attr(pfm, 'seq_type')
  matrix_to_heights(pfm, seq_type, decreasing)
}


#######################
# Two sample logo functions - method not used currently
#######################
# t_test = function(a, b){
#   x = tryCatch({
#     return( t.test(a, b, var.equal = T)$p.value )
#   } , error=function(e) return(1) )
#   x
# }
# 
# binom_test = function(a, b){
#   binom.test(sum(a), length(a), sum(b)/length(b))$p.value
# }
# 
# # ttest pvalue calculation reimplemented from TSL code 
# ttest_p_value <- function(k1, n1, k2, n2)  {
#   mean1 = k1 / n1;
#   mean2 = k2 / n2;
#   
#   var1_mult = (k1*(1-mean1)*(1-mean1)) + ((n1-k1)*mean1*mean1);
#   var2_mult = (k2*(1-mean2)*(1-mean2)) + ((n2-k2)*mean2*mean2);
#   
#   df   = n1 + n2 - 2;
#   svar = (var1_mult + var2_mult) / df;
#   t    = (mean1-mean2) / sqrt(svar*(1.0/n1 + 1.0/n2));
#   return( 2*pt(t, df, lower=FALSE) )
# }
# 
# # Convert to matrix of 1s and 0s
# to_matrix = function (x, seq){
#   X <- matrix(0, length(x), length(seq), dimnames = list(names(x), seq))
#   for (i in 1:length(seq)) X[x == seq[i], i] <- 1
#   return(X)
# }
# 
# twosamplelogo_method <- function(fg, bg, fix_pos=NULL, test='t.test', pval_thresh=0.05, ...){
#   if(!is.character(fg) | !is.character(bg)) 
#     stop('Foreground and background sequences must be character vectors') 
# 
#   if(!identical(unique(nchar(fg)), unique(nchar(bg)))) 
#     stop('Foreground sequences must have same width as background')
# 
#   fg_obj = makePFM(fg, keep_letter_mat=T, ...)
# 
#   namespace = attr(fg_obj$pfm, 'namespace')
#   seq_type = attr(fg_obj$pfm, 'seq_type')
# 
#   # Pass sequence type and namespace - avoid double guessing
#   bg_obj = makePFM(bg, keep_letter_mat=T, seq_type = 'other', namespace = namespace)
# 
#   # Difference in relative frequencies
#   pfm_diff = fg_obj$pfm - bg_obj$pfm 
# 
#   # Get letter matrices
#   fg_lm = fg_obj$letter_mat
#   bg_lm = bg_obj$letter_mat
# 
#   pv_mat = sapply(1:ncol(fg_lm), function(i){
#     p = to_matrix(fg_lm[,i], namespace)
#     n = to_matrix(bg_lm[,i], namespace)
#     
#     np = nrow(p)
#     nn = nrow(n)
#     
#     #pv = sapply(1:ncol(p), function(j) binom_test(p[,j], n[,j]) )
#     pv = sapply(1:ncol(p), function(j) ttest_p_value(sum(p[,j]), np, sum( n[,j] ), nn) )
#     names(pv) = names(p)
#     pv
#   })
# 
#   # Set things below threshold to zero
#   pfm_diff[ pv_mat >= pval_thresh ] = 0
#   pfm_diff = pfm_diff * 100
#   
#   #fix_pos = 1
#   if(!is.null(fix_pos)){
#     i = apply(fg_obj$pfm[,fix_pos,drop=F], 2, which.max)
#     ind = matrix(c(i, fix_pos), ncol=2)
#     x = pfm_diff
#     x[x < 0] = 0
#     pfm_diff[ind] = max( apply(x, 2, sum) )
#   }
#   
#   # Make heights
#   hh = matrix_to_heights(pfm_diff, seq_type)
#   hh
# }


# plogo <- function(fg, bg, pval_thresh=0.05){

#   fg_obj = makePFM(fg, keep_letter_mat=T, NO REL FREQ, ...)

#   namespace = attr(fg_obj$pfm, 'namespace')
#   seq_type = attr(fg_obj$pfm, 'seq_type')

#   # Pass sequence type and namespace - avoid double guessing
#   bg_obj = makePFM(bg, keep_letter_mat=T, seq_type = seq_type, namespace = namespace)


#   # -log( binom.test(1, 100, 0.01, alternative = 'g')$estimate / 
#   #   binom.test(1, 100, 0.01, alternative = 'l')$estimate )

# }