1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
#' Divide data into groups.
#'
#' @param x a visualisation
#' @param ... variables to group by.
#' @param add By default, when \code{add = FALSE}, \code{group_by} will
#' override existing groups. To instead add to the existing groups,
#' use \code{add = TRUE}
#' @importFrom dplyr group_by
#' @name group_by
#' @export
NULL
#' Dplyr verbs for ggvis.
#'
#' Applying a dplyr verb to a ggvis object creates a reactive transformation:
#' whenever the underlying data changes the transformation will be recomputed.
#'
#' @section Non-standard evaluation:
#' Both dplyr and shiny do non-standard evaluation, so to help each package
#' figure out when it should evaluate its code, reactive components in
#' these functions must be wrapped in \code{eval()}.
#'
#' @name dplyr-ggvis
#' @keywords internal
#' @examples
#' library(dplyr)
#' base <- mtcars %>% ggvis(~mpg, ~cyl) %>% layer_points()
#' base %>% group_by(cyl) %>% summarise(mpg = mean(mpg)) %>%
#' layer_points(fill := "red", size := 100)
#'
#' base %>% filter(mpg > 25) %>% layer_points(fill := "red")
#'
#' base %>% mutate(cyl = jitter(cyl)) %>% layer_points(fill := "red")
#'
#' \dontrun{
#' # Dynamically restrict range using filter
#' mtcars %>% ggvis(~disp, ~mpg) %>%
#' filter(cyl > eval(input_slider(0, 10))) %>%
#' layer_points()
#'
#' # Dynamically compute box-cox transformation with mutate
#' bc <- function(x, lambda) {
#' if (abs(lambda) < 1e-6) log(x) else (x ^ lambda - 1) / lambda
#' }
#' bc_slider <- input_slider(-2, 2, 1, step = 0.1)
#' mtcars %>%
#' ggvis(~disp, ~mpg) %>%
#' mutate(disp = bc(disp, eval(bc_slider))) %>%
#' layer_points()
#' }
NULL
# Methods for ggvis objects ----------------------------------------------------
#' @importFrom dplyr groups
#' @export
#' @rdname dplyr-ggvis
groups.ggvis <- function(x) {
shiny::isolate(dplyr::groups(x$cur_data()))
}
#' @importFrom dplyr group_by_
#' @export
#' @rdname dplyr-ggvis
group_by_.ggvis <- function(.data, ..., .dots, add = FALSE) {
dots <- lazyeval::all_dots(.dots, ...)
pieces <- extract_lazy_inputs(dots)
register_computation(.data, pieces$inputs, "group_by", function(data, args) {
dplyr::group_by_(data, .dots = lapply(pieces$lazy, add_args, args),
add = add)
})
}
#' @importFrom dplyr ungroup
#' @export
#' @rdname dplyr-ggvis
ungroup.ggvis <- function(x) {
register_computation(x, list(), "ungroup", function(data, args) {
dplyr::ungroup(data)
})
}
#' @importFrom dplyr summarise_
#' @rdname dplyr-ggvis
#' @export
summarise_.ggvis <- function(.data, ..., .dots) {
dots <- lazyeval::all_dots(.dots, ...)
pieces <- extract_lazy_inputs(dots)
register_computation(.data, pieces$inputs, "summarise", function(data, args) {
dplyr::summarise_(data, .dots = lapply(pieces$lazy, add_args, args))
})
}
#' @importFrom dplyr mutate_
#' @rdname dplyr-ggvis
#' @export
mutate_.ggvis <- function(.data, ..., .dots) {
dots <- lazyeval::all_dots(.dots, ...)
pieces <- extract_lazy_inputs(dots)
register_computation(.data, pieces$inputs, "mutate", function(data, args) {
dplyr::mutate_(data, .dots = lapply(pieces$lazy, add_args, args))
})
}
#' @importFrom dplyr arrange_
#' @rdname dplyr-ggvis
#' @export
arrange_.ggvis <- function(.data, ..., .dots) {
dots <- lazyeval::all_dots(.dots, ...)
pieces <- extract_lazy_inputs(dots)
register_computation(.data, pieces$inputs, "arrange", function(data, args) {
dplyr::arrange_(data, .dots = lapply(pieces$lazy, add_args, args))
})
}
#' @importFrom dplyr select_
#' @rdname dplyr-ggvis
#' @export
select_.ggvis <- function(.data, ..., .dots) {
dots <- lazyeval::all_dots(.dots, ...)
pieces <- extract_lazy_inputs(dots)
register_computation(.data, pieces$inputs, "select", function(data, args) {
dplyr::select_(data, .dots = lapply(pieces$lazy, add_args, args))
})
}
#' @importFrom dplyr filter_
#' @rdname dplyr-ggvis
#' @export
filter_.ggvis <- function(.data, ..., .dots) {
dots <- lazyeval::all_dots(.dots, ...)
pieces <- extract_lazy_inputs(dots)
register_computation(.data, pieces$inputs, "filter", function(data, args) {
dplyr::filter_(data, .dots = lapply(pieces$lazy, add_args, args))
})
}
#' @importFrom dplyr distinct_
#' @rdname dplyr-ggvis
#' @export
distinct_.ggvis <- function(.data, ..., .dots) {
dots <- lazyeval::all_dots(.dots, ...)
pieces <- extract_lazy_inputs(dots)
register_computation(.data, pieces$inputs, "distinct", function(data, args) {
dplyr::distinct_(data, .dots = lapply(pieces$lazy, add_args, args))
})
}
#' @importFrom dplyr slice_
#' @rdname dplyr-ggvis
#' @export
slice_.ggvis <- function(.data, ..., .dots) {
dots <- lazyeval::all_dots(.dots, ...)
pieces <- extract_lazy_inputs(dots)
register_computation(.data, pieces$inputs, "slice", function(data, args) {
dplyr::slice_(data, .dots = lapply(pieces$lazy, add_args, args))
})
}
#' @importFrom dplyr rename_
#' @rdname dplyr-ggvis
#' @export
rename_.ggvis <- function(.data, ..., .dots) {
dots <- lazyeval::all_dots(.dots, ...)
pieces <- extract_lazy_inputs(dots)
register_computation(.data, pieces$inputs, "rename", function(data, args) {
dplyr::rename_(data, .dots = lapply(pieces$lazy, add_args, args))
})
}
#' @importFrom dplyr transmute_
#' @rdname dplyr-ggvis
#' @export
transmute_.ggvis <- function(.data, ..., .dots) {
dots <- lazyeval::all_dots(.dots, ...)
pieces <- extract_lazy_inputs(dots)
register_computation(.data, pieces$inputs, "transmute", function(data, args) {
dplyr::transmute_(data, .dots = lapply(pieces$lazy, add_args, args))
})
}
#' Extract reactive inputs from a lazy dots.
#'
#' This works by replacing each reactive expression (which must be wrapped
#' in \code{eval}), with a reference to \code{args$xyz}. Then this function
#' returns both the modified lazy dots, and a list of reactives that need
#' to be created.
#'
#' @noRd
#' @examples
#' # extract_inputs() works with language objects ------------------------------
#'
#' # Simple expressions are returned as is
#' extract_inputs(quote(1))
#' extract_inputs(quote(x))
#' extract_inputs(quote(x + y))
#'
#' # If the call contains eval, then the subexpression is evalutes, the
#' # original is replaced with a reference to args, and inputs gains
#' # a reactive broker
#' extract_inputs(quote(eval(input_slider(0, 100))))
#'
#' slider <- input_slider(0, 100)
#' extract_inputs(quote(eval(slider) + eval(slider)))
#'
#' # extract_lazy_inputs() works with lazy objects -----------------------------
#' library(lazyeval)
#' extract_lazy_inputs(lazy(x + y))
#' extract_lazy_inputs(lazy(x + eval(input_slider(0, 100))))
#'
#' s1 <- input_slider(0, 100)
#' s2 <- input_slider(0, 200)
#' extract_lazy_inputs(lazy_dots(x + eval(s1), eval(s2), eval(s1) / eval(s2)))
extract_lazy_inputs <- function(x) {
if (inherits(x, "lazy_dots")) {
pieces <- lapply(x, extract_lazy_inputs)
lazy <- lazyeval::as.lazy_dots(pluck(pieces, "lazy"))
inputs <- unlist(unname(pluck(pieces, "inputs")), recursive = FALSE)
inputs <- inputs[!duplicated(names(inputs))]
list(
lazy = lazy,
inputs = inputs
)
} else if (inherits(x, "lazy")) {
new <- extract_inputs(x$expr, x$env)
x$expr <- new$expr
list(lazy = x, inputs = new$inputs)
} else {
stop("Unknown input type: ", paste0(class(x), collapse = "/"),
call. = FALSE)
}
}
extract_inputs <- function(expr, env = parent.frame()) {
if (is.name(expr) || is.atomic(expr)) {
# Base case
list(expr = expr, inputs = list())
} else if (is.call(expr) && identical(expr[[1]], quote(eval))) {
# If it's a call to eval, it's an input and should be evaluated
stopifnot(length(expr) == 2)
input <- eval(expr[[2]], env)
stopifnot(is.broker(input))
nm <- names(attr(input, "broker", TRUE)$controls)
list(
expr = substitute(args$nm, list(nm = as.name(nm))),
inputs = stats::setNames(list(input), nm)
)
} else if (is.call(expr)) {
# Recursive over arguments and join back together again
args_out <- lapply(expr[-1], extract_inputs, env = env)
args <- pluck(args_out, "expr")
inputs <- unlist(pluck(args_out, "inputs"), recursive = FALSE)
inputs <- inputs[!duplicated(names(inputs))]
list(
expr = as.call(c(expr[[1]], args)),
inputs = inputs
)
} else {
stop("Don't know how to deal with input of type: ", class(expr)[[1]],
call. = FALSE)
}
}
# Given a lazy object, modify it so it's environment also gets to
# access the args list.
add_args <- function(x, args) {
e <- new.env(parent = x$env)
e$args <- args
x$env <- e
x
}
# Methods for reactive data frames --------------------------------------------
#' @rdname dplyr-ggvis
#' @export
groups.reactive <- function(x) reactive(dplyr::groups(x()))
#' @rdname dplyr-ggvis
#' @export
ungroup.reactive <- function(x) reactive(dplyr::ungroup(x()))
#' @rdname dplyr-ggvis
#' @export
group_by_.reactive <- function(.data, ..., .dots, add = FALSE) {
reactive(dplyr::group_by_(.data(), ..., .dots = .dots, add = add))
}
#' @rdname dplyr-ggvis
#' @export
summarise_.reactive <- function(.data, ..., .dots) {
reactive(dplyr::summarise_(.data(), ..., .dots = .dots))
}
#' @rdname dplyr-ggvis
#' @export
mutate_.reactive <- function(.data, ..., .dots) {
reactive(dplyr::mutate_(.data(), ..., .dots = .dots))
}
#' @rdname dplyr-ggvis
#' @export
arrange_.reactive <- function(.data, ..., .dots) {
reactive(dplyr::arrange_(.data(), ..., .dots = .dots))
}
#' @rdname dplyr-ggvis
#' @export
select_.reactive <- function(.data, ..., .dots) {
reactive(dplyr::select_(.data(), ..., .dots = .dots))
}
#' @rdname dplyr-ggvis
#' @export
filter_.reactive <- function(.data, ..., .dots) {
reactive(dplyr::filter_(.data(), ..., .dots = .dots))
}
#' @rdname dplyr-ggvis
#' @export
distinct_.reactive <- function(.data, ..., .dots) {
reactive(dplyr::distinct_(.data(), ..., .dots = .dots))
}
#' @rdname dplyr-ggvis
#' @export
slice_.reactive <- function(.data, ..., .dots) {
reactive(dplyr::slice_(.data(), ..., .dots = .dots))
}
#' @rdname dplyr-ggvis
#' @export
rename_.reactive <- function(.data, ..., .dots) {
reactive(dplyr::rename_(.data(), ..., .dots = .dots))
}
#' @rdname dplyr-ggvis
#' @export
transmute_.reactive <- function(.data, ..., .dots) {
reactive(dplyr::transmute_(.data(), ..., .dots = .dots))
}
|