1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/family.R
\name{nbinom2}
\alias{nbinom2}
\alias{family_glmmTMB}
\alias{nbinom1}
\alias{compois}
\alias{truncated_compois}
\alias{genpois}
\alias{truncated_genpois}
\alias{truncated_poisson}
\alias{truncated_nbinom2}
\alias{truncated_nbinom1}
\alias{beta_family}
\alias{betabinomial}
\alias{tweedie}
\alias{skewnormal}
\alias{lognormal}
\alias{ziGamma}
\alias{t_family}
\alias{ordbeta}
\alias{nbinom12}
\alias{bell}
\title{Family functions for glmmTMB}
\usage{
nbinom2(link = "log")
nbinom1(link = "log")
compois(link = "log")
truncated_compois(link = "log")
genpois(link = "log")
truncated_genpois(link = "log")
truncated_poisson(link = "log")
truncated_nbinom2(link = "log")
truncated_nbinom1(link = "log")
beta_family(link = "logit")
betabinomial(link = "logit")
tweedie(link = "log")
skewnormal(link = "identity")
lognormal(link = "log")
ziGamma(link = "inverse")
t_family(link = "identity")
ordbeta(link = "logit")
nbinom12(link = "log")
bell(link = "log")
}
\arguments{
\item{link}{(character) link function for the conditional mean ("log", "logit", "probit", "inverse", "cloglog", "identity", or "sqrt")}
}
\value{
returns a list with (at least) components
\item{family}{length-1 character vector giving the family name}
\item{link}{length-1 character vector specifying the link function}
\item{variance}{a function of either 1 (mean) or 2 (mean and dispersion
parameter) arguments giving a value proportional to the
predicted variance (scaled by \code{sigma(.)})
}
}
\description{
Family functions for glmmTMB
}
\details{
If specified, the dispersion model uses a log link. Denoting the variance as \eqn{V}, the dispersion parameter
as \eqn{\phi=\exp(\eta)}{phi=exp(eta)} (where \eqn{\eta}{eta} is the linear predictor from the dispersion model),
and the predicted mean as \eqn{\mu}{mu}:
\describe{
\item{gaussian}{(from base R): constant \eqn{V=\phi^2}{V=phi^2}}
\item{Gamma}{(from base R) phi is the shape parameter. \eqn{V=\mu\phi}{V=mu*phi}}
\item{ziGamma}{a modified version of \code{Gamma} that skips checks for zero values, allowing it to be used to fit hurdle-Gamma models}
\item{nbinom2}{Negative binomial distribution: quadratic parameterization (Hardin & Hilbe 2007). \eqn{V=\mu(1+\mu/\phi) = \mu+\mu^2/\phi}{V=mu*(1+mu/phi) = mu+mu^2/phi}.}
\item{nbinom1}{Negative binomial distribution: linear parameterization (Hardin & Hilbe 2007). \eqn{V=\mu(1+\phi)}{V=mu*(1+phi)}. \emph{Note} that the \eqn{phi} parameter has opposite meanings in the \code{nbinom1} and \code{nbinom2} families. In \code{nbinom1} overdispersion increases with increasing \code{phi} (the Poisson limit is \code{phi=0}); in \code{nbinom2} overdispersion decreases with increasing \code{phi} (the Poisson limit is reached as \code{phi} goes to infinity).}
\item{nbinom12}{Negative binomial distribution: mixed linear/quadratic, as in the \code{DESeq2} package or as described by Lindén and Mäntyniemi (2011). \eqn{V=\mu(1+\phi+\mu/psi)}{V=mu*(1+phi+mu/psi)}. (In Lindén and Mäntyniemi's parameterization, \eqn{\omega = \phi}{omega=phi} and \eqn{\theta=1/\psi}{theta=1/psi}.) If a dispersion model is specified, it applies only to the linear (\code{phi}) term.}
\item{truncated_nbinom2}{Zero-truncated version of nbinom2: variance expression from Shonkwiler 2016. Simulation code (for this and the other truncated count distributions) is taken from C. Geyer's functions in the \code{aster} package; the algorithms are described in \href{https://cran.r-project.org/package=aster/vignettes/trunc.pdf}{this vignette}.}
\item{compois}{Conway-Maxwell Poisson distribution: parameterized with the exact mean (Huang 2017), which differs from the parameterization used in the \pkg{COMPoissonReg} package (Sellers & Shmueli 2010, Sellers & Lotze 2015). \eqn{V=\mu\phi}{V=mu*phi}.}
\item{genpois}{Generalized Poisson distribution (Consul & Famoye 1992). \eqn{V=\mu\exp(\eta)}{V=mu*exp(eta)}. (Note that Consul & Famoye (1992) define \eqn{\phi}{phi} differently.) Our implementation is taken from the \code{HMMpa} package, based on Joe and Zhu (2005) and implemented by Vitali Witowski.}
\item{beta}{Beta distribution: parameterization of Ferrari and Cribari-Neto (2004)
and the \pkg{betareg} package (Cribari-Neto and Zeileis 2010); \eqn{V=\mu(1-\mu)/(\phi+1)}{V=mu*(1-mu)/(phi+1)}}
\item{betabinomial}{Beta-binomial distribution: parameterized according to Morris (1997). \eqn{V=\mu(1-\mu)(n(\phi+n)/(\phi+1))}{V=mu*(1-mu)*(n*(phi+n)/(phi+1))}}
\item{tweedie}{Tweedie distribution: \eqn{V=\phi\mu^power}{V=phi*mu^power}. The power parameter is restricted to the interval \eqn{1<power<2}, i.e. the compound Poisson-gamma distribution. Code taken from the \code{tweedie} package, written by Peter Dunn. The power parameter (designated \code{psi} in the list of parameters) uses the link function \code{qlogis(psi-1.0)}; thus one can fix the power parameter to a specified value using \code{start = list(psi = qlogis(fixed_power-1.0)), map = list(psi = factor(NA))}.}
\item{t_family}{Student-t distribution with adjustable scale and location parameters (also called a \href{https://en.wikipedia.org/wiki/Pearson_distribution#The_Pearson_type_VII_distribution}{Pearson type VII distribution}). The shape (degrees of freedom parameter) is fitted with a log link; it may be often be useful to fix the shape parameter using \code{start = list(psi = log(fixed_df)), map = list(psi = factor(NA))}.}
\item{ordbeta}{Ordered beta regression from Kubinec (2022); fits continuous (e.g. proportion) data in the \emph{closed} interval [0,1]. Unlike the implementation in the \code{ordbeta} package, this family will not automatically scale the data. If your response variable is defined on the closed interval [a,b], transform it to [0,1] via \code{y_scaled <- (y-a)/(b-a)}.}
\item{lognormal}{Log-normal, parameterized by the mean and standard deviation \emph{on the data scale}}
\item{skewnormal}{Skew-normal, parameterized by the mean, standard deviation, and shape (Azzalini & Capitanio, 2014); constant \eqn{V=\phi^2}{V=phi^2}}
\item{bell}{Bell distribution (see Castellares et al 2018).
}
}
}
\references{
\itemize{
\item Azzalini A & Capitanio A (2014). "The skew-normal and related families." Cambridge: Cambridge University Press.
\item Castellares F, Ferrari SLP, & Lemonte AJ (2018) "On the Bell Distribution and Its Associated Regression Model for Count Data" Applied Mathematical Modelling 56: 172–85. \doi{10.1016/j.apm.2017.12.014}
\item Consul PC & Famoye F (1992). "Generalized Poisson regression model." Communications in Statistics: Theory and Methods 21:89–109.
\item Ferrari SLP, Cribari-Neto F (2004). "Beta Regression for Modelling Rates and Proportions." \emph{J. Appl. Stat.} 31(7), 799-815.
\item Hardin JW & Hilbe JM (2007). "Generalized linear models and extensions." Stata Press.
\item Huang A (2017). "Mean-parametrized Conway–Maxwell–Poisson regression models for dispersed counts." \emph{Statistical Modelling} 17(6), 1-22.
\item Joe H & Zhu R (2005). "Generalized Poisson Distribution: The Property of Mixture of Poisson and Comparison with Negative Binomial Distribution." \emph{Biometrical Journal} 47(2): 219–29. \doi{10.1002/bimj.200410102}.
\item Lindén, A & Mäntyniemi S. (2011). "Using the Negative Binomial Distribution to Model Overdispersion in Ecological Count Data." \emph{Ecology} 92 (7): 1414–21. \doi{10.1890/10-1831.1}.
\item Morris W (1997). "Disentangling Effects of Induced Plant Defenses and Food Quantity on Herbivores by Fitting Nonlinear Models." \emph{American Naturalist} 150:299-327.
\item Kubinec R (2022). "Ordered Beta Regression: A Parsimonious, Well-Fitting Model for Continuous Data with Lower and Upper Bounds." \emph{Political Analysis}. doi:10.1017/pan.2022.20.
\item Sellers K & Lotze T (2015). "COMPoissonReg: Conway-Maxwell Poisson (COM-Poisson) Regression". R package version 0.3.5. https://CRAN.R-project.org/package=COMPoissonReg
\item Sellers K & Shmueli G (2010) "A Flexible Regression Model for Count Data." \emph{Annals of Applied Statistics} 4(2), 943–61. \doi{10.1214/09-AOAS306}.
\item Shonkwiler, J. S. (2016). "Variance of the truncated negative binomial distribution." \emph{Journal of Econometrics} 195(2), 209–210. \doi{10.1016/j.jeconom.2016.09.002}.
}
}
|