1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
stopifnot(require("testthat"),
require("glmmTMB"))
## drop (unimportant) info that may not match across versions
drop_version <- function(obj) {
obj$modelInfo$packageVersion <- NULL
obj$modelInfo$family$initialize <- NULL ## updated initialization expressions
obj$modelInfo$parallel <- NULL ## parallel component changed from int to list
}
expect_equal_nover <- function(x,y,...) {
expect_equal(drop_version(x),
drop_version(y),
...)
}
## loaded by gt_load() in setup_makeex.R, but need to do this
## again to get it to work in devtools::check() environment (ugh)
gm0 <- up2date(gm0)
gm1 <- up2date(gm1)
data(sleepstudy, cbpp,
package = "lme4")
data(quine, package="MASS")
## n.b. for test_that, this must be assigned within the global
## environment ...
cbpp <<- transform(cbpp, prop = incidence/size, obs=factor(seq(nrow(cbpp))))
## utility: hack/replace parts of the updated result that will
## be cosmetically different
matchForm <- function(obj, objU, family=FALSE, fn = FALSE) {
for(cmp in c("call","frame")) # <- more?
objU[[cmp]] <- obj[[cmp]]
## Q: why are formulas equivalent but not identical? A: their environments may differ
objU$modelInfo$allForm <- obj$modelInfo$allForm
nm <- names(objU$modelInfo)
objU$modelInfo$packageVersion <- packageVersion("glmmTMB")
if (family) objU$modelInfo$family <- obj$modelInfo$family
## objective function/gradient may change between TMB versions
if (fn) {
for (f in c("fn","gr","he","retape","env","report","simulate")) {
objU$obj[[f]] <- obj$obj[[f]]
}
}
return(objU)
}
lm0 <- lm(Reaction~Days,sleepstudy)
fm00 <- glmmTMB(Reaction ~ Days, sleepstudy)
fm0 <- glmmTMB(Reaction ~ 1 + ( 1 | Subject), sleepstudy)
fm1 <- glmmTMB(Reaction ~ Days + ( 1 | Subject), sleepstudy)
fm2 <- glmmTMB(Reaction ~ Days + (Days| Subject), sleepstudy)
fm3 <- glmmTMB(Reaction ~ Days + ( 1 | Subject) + (0+Days | Subject),
sleepstudy)
test_that("Basic Gaussian Sleepdata examples", {
expect_is(fm00, "glmmTMB")
expect_is(fm0, "glmmTMB")
expect_is(fm1, "glmmTMB")
expect_is(fm2, "glmmTMB")
expect_is(fm3, "glmmTMB")
expect_equal(fixef(fm00)[[1]],coef(lm0),tol=1e-5)
expect_equal(sigma(fm00)*sqrt(nobs(fm00)/(df.residual(fm00)+1)),
summary(lm0)$sigma,tol=1e-5)
expect_equal(fixef(fm0)[[1]], c("(Intercept)" = 298.508), tolerance = .0001)
expect_equal(fixef(fm1)[[1]], c("(Intercept)" = 251.405, Days = 10.4673),
tolerance = .0001)
expect_equal(fixef(fm2)$cond, fixef(fm1)$cond, tolerance = 1e-5)# seen 1.042 e-6
expect_equal(fixef(fm3)$cond, fixef(fm1)$cond, tolerance = 5e-6)# seen 2.250 e-7
expect_equal(head(ranef(fm0)$cond$Subject[,1],3),
c(37.4881849228705, -71.5589277273216, -58.009085500647),
tolerance=1e-5)
## test *existence* of summary method -- nothing else for now
expect_is(suppressWarnings(summary(fm3)),"summary.glmmTMB")
})
test_that("Update Gaussian", {
skip_on_cran()
## call doesn't match (formula gets mangled?)
## timing different
fm1u <- update(fm0, . ~ . + Days)
expect_equal_nover(fm1, matchForm(fm1, fm1u, fn=TRUE))
})
test_that("Variance structures", {
skip_on_cran()
## above: fm2 <- glmmTMB(Reaction ~ Days + (Days| Subject), sleepstudy)
expect_is(fm2us <- glmmTMB(Reaction ~ Days + us(Days| Subject), sleepstudy), "glmmTMB")
expect_is(fm2cs <- glmmTMB(Reaction ~ Days + cs(Days| Subject), sleepstudy), "glmmTMB")
expect_is(fm2diag <- glmmTMB(Reaction ~ Days + diag(Days| Subject), sleepstudy), "glmmTMB")
expect_equal(getME(fm2, "theta"),
getME(fm2us,"theta"))
## FIXME: more here, compare results against lme4 ...
})
test_that("Sleepdata Variance components", {
expect_equal(c(unlist(VarCorr(fm3))),
c(cond.Subject = 584.247907378213, cond.Subject.1 = 33.6332741779585),
tolerance=1e-5)
})
test_that("Basic Binomial CBPP examples", {
## Basic Binomial CBPP examples ---- intercept-only fixed effect
expect_is(gm0, "glmmTMB")
expect_is(gm1, "glmmTMB")
expect_equal(fixef(gm0)[[1]], c("(Intercept)" = -2.045671), tolerance = 1e-3)#lme4 results
expect_equal(fixef(gm1)[[1]], c("(Intercept)" = -1.398343,#lme4 results
period2 = -0.991925, period3 = -1.128216,
period4 = -1.579745),
tolerance = 1e-3) # <- TODO: lower eventually
})
test_that("Multiple RE, reordering", {
### Multiple RE, reordering
skip_on_cran()
tmb1 <- glmmTMB(cbind(incidence, size-incidence) ~ period + (1|herd) + (1|obs),
data = cbpp, family=binomial())
tmb2 <- glmmTMB(cbind(incidence, size-incidence) ~ period + (1|obs) + (1|herd),
data = cbpp, family=binomial())
expect_equal(fixef(tmb1), fixef(tmb2), tolerance = 1e-8)
expect_equal(getME(tmb1, "theta"), getME(tmb2, "theta")[c(2,1)], tolerance = 5e-7)
})
test_that("Alternative family specifications [via update(.)]", {
## intercept-only fixed effect
res_chr <- matchForm(gm0, update(gm0, family= "binomial"), fn = TRUE)
if (getRversion() >= "4.3.3") {
## mysterious failure on windows/oldrel (4.3.2)
expect_equal_nover(gm0, res_chr)
expect_equal_nover(gm0, matchForm(gm0, update(gm0, family= binomial()), fn = TRUE))
expect_warning(res_list <- matchForm(gm0, update(gm0, family= list(family = "binomial",
link = "logit")),
family=TRUE, fn=TRUE))
expect_equal_nover(gm0, res_list)
}
})
test_that("Update Binomial", {
## matchForm(): call doesn't match (formula gets mangled?)
## timing different
if (getRversion() >= "4.3.3") {
gm1u <- update(gm0, . ~ . + period)
expect_equal_nover(gm1, matchForm(gm1, gm1u, fn=TRUE), tolerance = 5e-8)
}
})
test_that("internal structures", {
## RE terms in cond, zi, and disp model
expect_equal(names(fm0$modelInfo$reTrms),
c("cond","zi", "disp"))
})
test_that("close to lme4 results", {
skip_on_cran()
expect_true(require("lme4"))
L <- load(system.file("testdata", "lme-tst-fits.rda",
package="lme4", mustWork=TRUE))
expect_is(L, "character")
message("Loaded testdata from lme4:\n ",
paste(strwrap(paste(L, collapse = ", ")),
collapse = "\n "))
if(FALSE) { ## part of the above [not recreated here for speed mostly:]
## intercept only in both fixed and random effects
fit_sleepstudy_0 <- lmer(Reaction ~ 1 + ( 1 | Subject), sleepstudy)
## fixed slope, intercept-only RE
fit_sleepstudy_1 <- lmer(Reaction ~ Days + ( 1 | Subject), sleepstudy)
## fixed slope, intercept & slope RE
fit_sleepstudy_2 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
## fixed slope, independent intercept & slope RE
fit_sleepstudy_3 <- lmer(Reaction ~ Days + (1|Subject)+ (0+Days|Subject), sleepstudy)
cbpp$obs <- factor(seq(nrow(cbpp)))
## intercept-only fixed effect
fit_cbpp_0 <- glmer(cbind(incidence, size-incidence) ~ 1 + (1|herd),
cbpp, family=binomial)
## include fixed effect of period
fit_cbpp_1 <- update(fit_cbpp_0, . ~ . + period)
## include observation-level RE
fit_cbpp_2 <- update(fit_cbpp_1, . ~ . + (1|obs))
## specify formula by proportion/weights instead
fit_cbpp_3 <- update(fit_cbpp_1, incidence/size ~ period + (1 | herd), weights = size)
}
## What we really want to compare against - Maximum Likelihood (package 'DESCRIPTION' !)
fi_0 <- lmer(Reaction ~ 1 + ( 1 | Subject), sleepstudy, REML=FALSE)
fi_1 <- lmer(Reaction ~ Days + ( 1 | Subject), sleepstudy, REML=FALSE)
fi_2 <- lmer(Reaction ~ Days + (Days| Subject), sleepstudy, REML=FALSE)
fi_3 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject),
sleepstudy, REML=FALSE)
## Now check closeness to lme4 results
## ......................................
})
context("trickier examples")
data(Owls)
## is <<- necessary ... ?
Owls <- transform(Owls,
ArrivalTime=scale(ArrivalTime,center=TRUE,scale=FALSE),
NCalls= SiblingNegotiation)
test_that("basic zero inflation", {
skip_on_cran()
if(require("pscl")) {
o0.tmb <- glmmTMB(NCalls~(FoodTreatment + ArrivalTime) * SexParent +
offset(logBroodSize),
ziformula=~1, data = Owls,
family=poisson(link = "log"))
o0.pscl <-zeroinfl(NCalls~(FoodTreatment + ArrivalTime) * SexParent +
offset(logBroodSize)|1, data = Owls)
expect_equal(summary(o0.pscl)$coefficients$count, summary(o0.tmb)$coefficients$cond, tolerance=1e-5)
expect_equal(summary(o0.pscl)$coefficients$zero, summary(o0.tmb)$coefficients$zi, tolerance=1e-5)
o1.tmb <- glmmTMB(NCalls~(FoodTreatment + ArrivalTime) * SexParent +
offset(logBroodSize) + diag(1 | Nest),
ziformula=~1, data = Owls, family=poisson(link = "log"))
expect_equal(ranef(o1.tmb)$cond$Nest[1,1], -0.484, tolerance=1e-2) #glmmADMB gave -0.4842771
}
})
test_that("alternative binomial model specifications", {
skip_on_cran()
d <<- data.frame(y=1:10,N=20,x=1) ## n.b. global assignment for testthat
m0 <- suppressWarnings(glmmTMB(cbind(y,N-y) ~ 1, data=d, family=binomial()))
m3 <- glmmTMB(y/N ~ 1, weights=N, data=d, family=binomial())
expect_equal(fixef(m0),fixef(m3))
m1 <- glmmTMB((y>5)~1,data=d,family=binomial)
m2 <- glmmTMB(factor(y>5)~1,data=d,family=binomial)
expect_equal(c(unname(logLik(m1))),-6.931472,tol=1e-6)
expect_equal(c(unname(logLik(m2))),-6.931472,tol=1e-6)
})
test_that("formula expansion", {
## test that formulas are expanded in the call/printed
form <- Reaction ~ Days + (1|Subject)
expect_equal(grep("Reaction ~ Days",
capture.output(print(glmmTMB(form, sleepstudy))),
fixed=TRUE),1)
})
test_that("NA handling", {
skip_on_cran()
data(sleepstudy,package="lme4")
ss <- sleepstudy
ss$Days[c(2,20,30)] <- NA
op <- options(na.action=NULL)
expect_error(glmmTMB(Reaction~Days,ss),"missing values in object")
op <- options(na.action=na.fail)
expect_error(glmmTMB(Reaction~Days,ss),"missing values in object")
expect_equal(unname(fixef(glmmTMB(Reaction~Days,ss,na.action=na.omit))[[1]]),
c(249.70505,11.11263),
tolerance=1e-6)
op <- options(na.action=na.omit)
expect_equal(unname(fixef(glmmTMB(Reaction~Days,ss))[[1]]),
c(249.70505,11.11263),
tolerance=1e-6)
})
test_that("quine NB fit", {
skip_on_cran()
quine.nb1 <- MASS::glm.nb(Days ~ Sex/(Age + Eth*Lrn), data = quine)
quine.nb2 <- glmmTMB(Days ~ Sex/(Age + Eth*Lrn), data = quine,
family=nbinom2())
expect_equal(coef(quine.nb1),fixef(quine.nb2)[["cond"]],
tolerance=1e-4)
})
## quine.nb3 <- glmmTMB(Days ~ Sex + (1|Age), data = quine,
## family=nbinom2())
test_that("contrasts arg", {
skip_on_cran()
quine.nb1 <- MASS::glm.nb(Days ~ Sex*Age, data = quine,
contrasts=list(Sex="contr.sum",Age="contr.sum"))
quine.nb2 <- glmmTMB(Days ~ Sex*Age, data = quine,
family=nbinom2(),
contrasts=list(Sex="contr.sum",Age="contr.sum"))
expect_equal(coef(quine.nb1),fixef(quine.nb2)[["cond"]],
tolerance=1e-4)
})
test_that("zero disp setting", {
skip_on_cran()
set.seed(101)
dd <- data.frame(y=rnorm(100),obs=1:100)
m0 <- glmmTMB(y~1, data=dd)
v0 <- sigma(m0)^2
m1 <- glmmTMB(y~1+(1|obs), data=dd)
tmpf <- function(x) c(sigma(x)^2, c(VarCorr(x)[["cond"]]$obs))
m <- -log10(.Machine$double.eps^(1/4))
pvec <- c(1,2.5,m,2*m,10)
res <- matrix(NA,ncol=2,nrow=length(pvec), dimnames = list(format(pvec, digits = 3), c("sigma^2", "cond_var")))
for (i in (seq_along(pvec))) {
mz <- update(m1,dispformula=~0,
control=glmmTMBControl(zerodisp_val=log(10^(-pvec[i]))))
res[i,] <- tmpf(mz)
}
res <- rbind(res,tmpf(m1))
## sum of residual variance and RE variance should be approx constant/independent of fixed sigma
expect_true(var(res[,1]+res[,2])<1e-8)
})
test_that("dollar/no data arg warning", {
expect_warning(glmmTMB(Reaction ~ sleepstudy$Days, data = sleepstudy),
"is not recommended")
attach(sleepstudy)
expect_warning(glmmTMB(Reaction ~ Days), "is recommended")
op <- options(warn = 2)
## check that warning is suppressed
expect_is(glmmTMB(Reaction ~ Days, data = NULL), "glmmTMB")
detach(sleepstudy)
options(op)
})
test_that("double bar notation", {
data("sleepstudy", package="lme4")
m1 <- glmmTMB(Reaction ~ 1 + (Days || Subject), sleepstudy)
expect_equal(c(VarCorr(m1)$cond$Subject),
c(564.340387730194, 0, 0, 140.874101713108),
tolerance = 1e-6)
})
test_that("bar/double-bar bug with gaussian response", {
set.seed(1)
n <- 100
xdata <- data.frame(
rfac1 = as.factor(sample(letters[1:10], n, replace = TRUE)),
rfac2 = as.factor(sample(letters[1:10], n, replace = TRUE)),
cov = rnorm(n),
rv = rpois(n, lambda = 2)
)
m2 <- glmmTMB(rv~cov+(1+cov||rfac1)+(1|rfac2), family=gaussian, data=xdata)
## previously failed with "'names' attribute [3] must be the same length as the vector [1]"
expect_is(m2, "glmmTMB")
expect_equal(fixef(m2)$cond,
c(`(Intercept)` = 2.09164503130437, cov = -0.0228597948394547))
})
test_that("drop dimensions in response variable", {
## GH #937
mm <- transform(mtcars, mpg = scale(mpg))
expect_is(glmmTMB(mpg ~ cyl, mm), "glmmTMB")
})
test_that("handle failure in numDeriv::jacobian",
{
dd <- structure(list(preMDS = c(6L, 2L, 1L, 2L, 3L, 34L, 3L, 239L,
1L, 2L, 4L, 81L, 1L, 1L, 1L, 255L, 8L, 72L, 110L, 3L, 6L, 61L,
253L, 113L, 49L, 124L, 72L, 4L, 35L, 4206L, 3660L, 3100L, 4308L,
5871L, 1362L, 4301L, 2673L, 204L, 216L), F_Absetzen = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L), levels = c("0", "1"), class = "factor"),
Betrieb = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 5L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L
), levels = c("B02", "B03", "B04", "B05", "B06", "B07", "B08",
"B10", "B11", "B13", "B13Zucht", "B14"), class = "factor")),
row.names = seq(39),
class = "data.frame")
m1 <- suppressWarnings(
glmmTMB(preMDS ~ 1 + F_Absetzen + (1 | Betrieb), data = dd,
family = truncated_nbinom1))
expect_is(m1, "glmmTMB")
})
|