1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
|
## test more exotic familes/model types
stopifnot(require("testthat"),
require("glmmTMB"))
simfun0 <- function(beta=c(2,1),
sd.re=5,
ngrp=10,nobs=200,
invlink=exp) {
x <- rnorm(nobs)
f <- factor(rep(1:ngrp,nobs/ngrp))
u <- rnorm(ngrp,sd=sd.re)
eta <- beta[1]+beta[2]*x+u[f]
mu <- invlink(eta)
return(data.frame(x,f,mu))
}
test_that("binomial", {
load(system.file("testdata","radinger_dat.RData",package="lme4"))
radinger_dat <<- radinger_dat ## global assignment for testthat
mod1 <<- glmmTMB(presabs~predictor+(1|species),family=binomial,
radinger_dat)
mod2 <<- update(mod1,as.logical(presabs)~.)
expect_equal(predict(mod1),predict(mod2))
## Compare 2-column and prop/size specification
dd <- data.frame(success=1:10, failure=11:20)
dd$size <- rowSums(dd)
dd$prop <- local( success / size, dd)
mod4 <- glmmTMB(cbind(success,failure)~1,family=binomial,data=dd)
mod5 <- glmmTMB(prop~1,weights=size,family=binomial,data=dd)
expect_equal( logLik(mod4) , logLik(mod5) )
expect_equal( fixef(mod4)$cond , fixef(mod5)$cond )
## Now with extra weights
dd$w <- 2
mod6 <- glmmTMB(cbind(success,failure)~1,family=binomial,data=dd,weights=w)
mod7 <- glmmTMB(prop~1,weights=size*w,family=binomial,data=dd)
mod6.glm <- glm(cbind(success,failure)~1,family=binomial,data=dd,weights=w)
mod7.glm <- glm(prop~1,weights=size*w,family=binomial,data=dd)
expect_equal( logLik(mod6)[[1]] , logLik(mod6.glm)[[1]] )
expect_equal( logLik(mod7)[[1]] , logLik(mod7.glm)[[1]] )
expect_equal( fixef(mod6)$cond , fixef(mod7)$cond )
## Test TRUE/FALSE specification
x <- c(TRUE, TRUE, FALSE)
dx <- data.frame(x)
m1 <- glmmTMB(x~1, family=binomial(), data=dx)
m2 <- glm (x~1, family=binomial(), data=dx)
expect_equal(
as.numeric(logLik(m1)),
as.numeric(logLik(m2))
)
expect_equal(
as.numeric(unlist(fixef(m1))),
as.numeric(coef(m2))
)
## Mis-specifications
prop <- c(.1, .2, .3) ## weights=1 => prop * weights non integers
expect_warning( glmmTMB(prop~1, family=binomial()) ) ## Warning as glm
x <- c(1, 2, 3) ## weights=1 => x > weights !
expect_error ( glmmTMB(x~1, family=binomial(),
data = data.frame(x))) ## Error as glm
})
## check for negative values
test_that("detect negative values in two-column binomial response", {
x <- matrix(c(-1, 1, 2, 2, 3, 4), nrow = 3)
expect_error(glmmTMB(x~1, family=binomial(), data = NULL),
"negative values not allowed")
})
count_dists <-c("poisson", "genpois", "compois",
"truncated_genpois",
"nbinom1", "nbinom2",
"truncated_nbinom1",
"truncated_nbinom2"
)
binom_dists <- c("binomial", "betabinomial")
test_that("count distributions", {
dd <- data.frame(y=c(0.5, rep(1:4, c(9, 2, 2, 2))))
for (f in count_dists) {
expect_warning(glmmTMB(y~1, data=dd, family=f), "non-integer")
}
})
test_that("binom-type distributions", {
dd <- data.frame(y=c(0.5, rep(1:4, c(9, 2, 2, 2)))/10)
for (f in binom_dists) {
expect_warning(glmmTMB(y~1,
weights = rep(10, nrow(dd)),
data=dd, family=f), "non-integer")
}
})
test_that("beta", {
skip_on_cran()
set.seed(101)
nobs <- 200; eps <- 0.001; phi <- 0.1
dd0 <- simfun0(nobs=nobs,sd.re=1,invlink=plogis)
y <- with(dd0,rbeta(nobs,shape1=mu/phi,shape2=(1-mu)/phi))
dd <<- data.frame(dd0,y=pmin(1-eps,pmax(eps,y)))
m1 <- glmmTMB(y~x+(1|f),family=beta_family(),
data=dd)
expect_equal(fixef(m1)[[1]],
structure(c(1.98250567574413, 0.843382531038295),
.Names = c("(Intercept)", "x")),
tol=1e-5)
expect_equal(c(VarCorr(m1)[[1]][[1]]),
0.433230926800709, tol=1e-5)
## allow family="beta", but with warning
expect_warning(m2 <- glmmTMB(y~x+(1|f),family="beta",
data=dd),"please use")
expect_equal(coef(summary(m1)),coef(summary(m2)))
})
test_that("nbinom", {
skip_on_cran()
nobs <- 200; phi <- 0.1
set.seed(101)
dd0 <- simfun0(nobs=nobs)
## global assignment for testthat (??)
dd <- data.frame(dd0,y=rnbinom(nobs,size=phi,mu=dd0$mu))
m1 <- glmmTMB(y~x+(1|f),family=nbinom2(),
data=dd)
expect_equal(fixef(m1)[[1]],
structure(c(2.09866748794435, 1.12703589660625),
.Names = c("(Intercept)", "x")),
tolerance = 1e-5)
expect_equal(c(VarCorr(m1)[[1]][[1]]),
9.54680210862774, tolerance = 1e-5)
expect_equal(sigma(m1),0.09922738,tolerance = 1e-5)
expect_equal(head(residuals(m1, type = "deviance"),2),
c(`1` = -0.806418177063906, `2` = -0.312895476230701),
tolerance = 1e-5)
## nbinom1
## to simulate, back-calculate shape parameters for NB2 ...
nbphi <- 2
nbvar <- nbphi*dd0$mu ## n.b. actual model is (1+phi)*var,
## so estimate of phi is approx. 1
## V = mu*(1+mu/k) -> mu/k = V/mu-1 -> k = mu/(V/mu-1)
k <- with(dd0,mu/(nbvar/mu - 1))
y <- rnbinom(nobs,size=k,mu=dd$mu)
dd <- data.frame(dd0,y=y) ## global assignment for testthat
m1 <- glmmTMB(y~x+(1|f),family=nbinom1(),
data=dd)
expect_equal(c(unname(c(fixef(m1)[[1]])),
c(VarCorr(m1)[[1]][[1]]),
sigma(m1)),
c(1.93154240357181, 0.992776302432081,
16.447888398429, 1.00770603513152),
tolerance = 1e-5)
expect_equal(head(residuals(m1, type = "deviance"),2),
c(`1` = 0.966425183534698, `2` = -0.213960044837981),
tolerance = 1e-5)
## identity link: GH #20
x <- 1:100; m <- 2; b <- 100
y <- m*x+b
set.seed(101)
dat <<- data.frame(obs=rnbinom(length(y), mu=y, size=5), x=x)
## with(dat, plot(x, obs))
## coef(mod1 <- MASS::glm.nb(obs~x,link="identity",dat))
expect_equal(fixef(glmmTMB(obs~x, family=nbinom2(link="identity"), dat)),
structure(list(cond = structure(c(115.092240041138, 1.74390840106971),
.Names = c("(Intercept)", "x")), zi = numeric(0),
disp = structure(1.71242627201796, .Names = "(Intercept)")),
.Names = c("cond", "zi", "disp"), class = "fixef.glmmTMB"))
## segfault (GH #248)
dd <- data.frame(success=1:10,failure=10)
expect_error(glmmTMB(cbind(success,failure)~1,family=nbinom2,data=dd),
"matrix-valued responses are not allowed")
})
test_that("dbetabinom", {
skip_on_cran()
set.seed(101)
nobs <- 200; eps <- 0.001; phi <- 0.1
dd0 <- simfun0(nobs=nobs,sd.re=1,invlink=plogis)
p <- with(dd0,rbeta(nobs,shape1=mu/phi,shape2=(1-mu)/phi))
p <- pmin(1-eps,pmax(p,eps))
b <- rbinom(nobs,size=5,prob=p)
dd <<- data.frame(dd0,y=b,N=5)
m1 <- glmmTMB(y/N~x+(1|f),
weights=N,
family=betabinomial(),
data=dd)
expect_equal(c(unname(c(fixef(m1)[[1]])),
c(VarCorr(m1)[[1]][[1]]),
sigma(m1)),
c(2.1482114,1.0574946,0.7016553,8.3768711),
tolerance=1e-5)
## Two-column specification
m2 <- glmmTMB(cbind(y, N-y) ~ x + (1|f),
family=betabinomial(),
data=dd)
expect_identical(m1$fit, m2$fit)
## Rolf Turner example:
X <- readRDS(system.file("test_data","turner_bb.rds",package="glmmTMB"))
fmla <- cbind(Dead, Alive) ~ (Trt + 0)/Dose + (Dose | Rep)
## baseline (binomial, not betabinomial)
fit0 <- glmmTMB(fmla, data = X, family = binomial(link = "cloglog"),
dispformula = ~1)
skip_on_cran()
## fails ATLAS tests with failure in inner optimization
## loop ("gradient function must return a numeric vector of length 16")
fit1 <- suppressWarnings(
## NaN function evaluation;
## non-pos-def Hessian;
## false convergence warning from nlminb
glmmTMB(fmla, data = X, family = betabinomial(link = "cloglog"),
dispformula = ~1)
)
fit1_glmmA <- readRDS(system.file("test_data","turner_bb_GLMMadaptive.rds",
package="glmmTMB"))
suppressWarnings(
fit2 <- glmmTMB(fmla, data = X,
family = betabinomial(link = "cloglog"),
dispformula = ~1,
start=list(beta=fixef(fit0)$cond))
## non-pos-def Hessian warning
## diagnose() suggests a singular fit
## but fixed effects actually look OK
)
ff1 <- fixef(fit1)$cond
ff2 <- fixef(fit2)$cond
## conclusions:
## (1) glmmTMB fit from initial starting vals is bad
## (2) glmmTMB fit from restart is OK (for fixed effects)
## (3) GLMMadaptive matches OK **but not** for nAGQ=1 (which _should_
## fit) --
np <- length(ff1)
ff_GA <- fit1_glmmA[1:np,ncol(fit1_glmmA)]
expect_equal(ff_GA, ff2, tolerance=0.05)
if (FALSE) {
## graphical exploration ...
cc <- cbind(ff1,ff2,fit1_glmmA[1:np,])
matplot(cc,type="b")
## plot diffs between glmmTMB fit and GLMMadaptive for nAGQ>1
adiff <- sweep(fit1_glmmA[1:np,-1],1,ff2,"-")
matplot(adiff, type="b",
ylab="diff from glmmTMB")
}
})
test_that("truncated", {
skip_on_cran()
## Poisson
set.seed(101)
z_tp <<- rpois(1000,lambda=exp(1))
z_tp <<- z_tp[z_tp>0]
if (FALSE) {
## n.b.: keep library() calls commented out, they may
## trigger CRAN complaints
## library(glmmADMB)
g0_tp <- glmmadmb(z_tp~1,family="truncpoiss",link="log")
fixef(g0) ## 0.9778591
}
g1_tp <- glmmTMB(z_tp~1,family=truncated_poisson(),
data=data.frame(z_tp))
expect_equal(unname(fixef(g1_tp)[[1]]),0.9778593,tolerance = 1e-5)
## Truncated poisson with zeros => invalid:
num_zeros <- 10
z_tp0 <<- c(rep(0, num_zeros), z_tp)
expect_error(g1_tp0 <- glmmTMB(z_tp0~1,family=truncated_poisson(),
data=data.frame(z_tp0)))
## Truncated poisson with zeros and zero-inflation:
g1_tp0 <- glmmTMB(z_tp0~1,family=truncated_poisson(),
ziformula=~1,
data=data.frame(z_tp0))
expect_equal( plogis(as.numeric(fixef(g1_tp0)$zi)), num_zeros/length(z_tp0), tolerance = 1e-7 ) ## Test zero-prob
expect_equal(fixef(g1_tp0)$cond, fixef(g1_tp)$cond, tolerance = 1e-6) ## Test conditional model
## nbinom2
set.seed(101)
z_nb <<- rnbinom(1000,size=2,mu=exp(2))
z_nb <<- z_nb[z_nb>0]
if (FALSE) {
## library(glmmADMB)
g0_nb2 <- glmmadmb(z_nb~1,family="truncnbinom",link="log")
fixef(g0_nb2) ## 1.980207
g0_nb2$alpha ## 1.893
}
g1_nb2 <- glmmTMB(z_nb~1,family=truncated_nbinom2(),
data=data.frame(z_nb))
expect_equal(c(unname(fixef(g1_nb2)[[1]]),sigma(g1_nb2)),
c(1.980207,1.892970),tolerance = 1e-5)
## Truncated nbinom2 with zeros => invalid:
num_zeros <- 10
z_nb0 <<- c(rep(0, num_zeros), z_nb)
expect_error(g1_nb0 <- glmmTMB(z_nb0~1,family=truncated_nbinom2(),
data=data.frame(z_nb0)))
## Truncated nbinom2 with zeros and zero-inflation:
g1_nb0 <- glmmTMB(z_nb0~1,family=truncated_nbinom2(),
ziformula=~1,
data=data.frame(z_nb0))
expect_equal( plogis(as.numeric(fixef(g1_nb0)$zi)), num_zeros/length(z_nb0), tolerance = 1e-7 ) ## Test zero-prob
expect_equal(fixef(g1_nb0)$cond, fixef(g1_nb2)$cond, tolerance = 1e-6) ## Test conditional model
## nbinom1: constant mean, so just a reparameterization of
## nbinom2 (should have the same likelihood)
## phi=(1+mu/k)=1+exp(2)/2 = 4.69
if (FALSE) {
## library(glmmADMB)
g0_nb1 <- glmmadmb(z_nb~1,family="truncnbinom1",link="log")
fixef(g0_nb1) ## 2.00112
g0_nb1$alpha ## 3.784
}
g1_nb1 <- glmmTMB(z_nb~1,family=truncated_nbinom1(),
data=data.frame(z_nb))
expect_equal(c(unname(fixef(g1_nb1)[[1]]),sigma(g1_nb1)),
c(1.980207,3.826909),tolerance = 1e-5)
## Truncated nbinom1 with zeros => invalid:
expect_error(g1_nb0 <- glmmTMB(z_nb0~1,family=truncated_nbinom1(),
data=data.frame(z_nb0)))
## Truncated nbinom2 with zeros and zero-inflation:
g1_nb0 <- glmmTMB(z_nb0~1,family=truncated_nbinom1(),
ziformula=~1,
data=data.frame(z_nb0))
expect_equal( plogis(as.numeric(fixef(g1_nb0)$zi)), num_zeros/length(z_nb0), tolerance = 1e-7 ) ## Test zero-prob
expect_equal(fixef(g1_nb0)$cond, fixef(g1_nb1)$cond, tolerance = 1e-6) ## Test conditional model
})
##Genpois
test_that("truncated_genpois",{
skip_on_cran()
tgp1 <<- glmmTMB(z_nb ~1, data=data.frame(z_nb), family=truncated_genpois())
tgpdat <<- data.frame(y=simulate(tgp1)[,1])
tgp2 <<- glmmTMB(y ~1, tgpdat, family=truncated_genpois())
expect_equal(sigma(tgp1), sigma(tgp2), tolerance = 1e-1)
expect_equal(fixef(tgp1)$cond[1], fixef(tgp2)$cond[1], tolerance = 1e-2)
cc <- confint(tgp2, full=TRUE)
expect_lt(cc["sigma", "2.5 %"], sigma(tgp1))
expect_lt(sigma(tgp1), cc["sigma", "97.5 %"])
expect_lt(cc["cond.(Intercept)", "2.5 %"], unname(fixef(tgp1)$cond[1]))
expect_lt(unname(fixef(tgp1)$cond[1]), cc["cond.(Intercept)", "97.5 %"])
})
##Compois
test_that("truncated_compois",{
skip_on_cran()
cmpdat <<- data.frame(f=factor(rep(c('a','b'), 10)),
y=c(15,5,20,7,19,7,19,7,19,6,19,10,20,8,21,8,22,7,20,8))
tcmp1 <<- glmmTMB(y~f, cmpdat, family= truncated_compois())
expect_equal(unname(fixef(tcmp1)$cond), c(2.9652730653, -0.9773987194), tolerance = 1e-6)
expect_equal(sigma(tcmp1), 0.1833339, tolerance = 1e-6)
expect_equal(predict(tcmp1,type="response")[1:2], c(19.4, 7.3), tolerance = 1e-6)
})
test_that("compois", {
skip_on_cran()
# cmpdat <<- data.frame(f=factor(rep(c('a','b'), 10)),
# y=c(15,5,20,7,19,7,19,7,19,6,19,10,20,8,21,8,22,7,20,8))
cmp1 <<- glmmTMB(y~f, cmpdat, family=compois())
expect_equal(unname(fixef(cmp1)$cond), c(2.9652730653, -0.9773987194), tolerance = 1e-6)
expect_equal(sigma(cmp1), 0.1833339, tolerance = 1e-6)
expect_equal(predict(cmp1,type="response")[1:2], c(19.4, 7.3), tolerance = 1e-6)
})
test_that("genpois", {
skip_on_cran()
gendat <<- data.frame(y=c(11,10,9,10,9,8,11,7,9,9,9,8,11,10,11,9,10,7,13,9))
gen1 <<- glmmTMB(y~1, family=genpois(), gendat)
expect_equal(unname(fixef(gen1)$cond), 2.251292, tolerance = 1e-6)
expect_equal(sigma(gen1), 0.235309, tolerance = 1e-6)
})
test_that("tweedie", {
skip_on_cran()
## Boiled down tweedie:::rtweedie :
rtweedie <- function (n, xi = power, mu, phi, power = NULL)
{
mu <- array(dim = n, mu)
if ((power > 1) & (power < 2)) {
rt <- array(dim = n, NA)
lambda <- mu^(2 - power)/(phi * (2 - power))
alpha <- (2 - power)/(1 - power)
gam <- phi * (power - 1) * mu^(power - 1)
N <- rpois(n, lambda = lambda)
for (i in (1:n)) {
rt[i] <- sum(rgamma(N[i], shape = -alpha, scale = gam[i]))
}
} else stop()
as.vector(rt)
}
## Simulation experiment
nobs <- 2000; mu <- 4; phi <- 2; p <- 1.7
set.seed(101)
y <- rtweedie(nobs, mu=mu, phi=phi, power=p)
twm <- glmmTMB(y ~ 1, family=tweedie(), data = NULL)
## Check mu
expect_equal(unname( exp(fixef(twm)$cond) ),
mu,
tolerance = .1)
## Check phi
expect_equal(unname( exp(fixef(twm)$disp) ),
phi,
tolerance = .1)
## Check power
expect_equal(unname( plogis(twm$fit$par["psi"]) + 1 ),
p,
tolerance = .01)
## Check internal rtweedie used by simulate
y2 <- c(simulate(twm)[,1],simulate(twm)[,1])
twm2 <- glmmTMB(y2 ~ 1, family=tweedie(), data = NULL)
expect_equal(fixef(twm)$cond, fixef(twm2)$cond, tolerance = 1e-1)
expect_equal(sigma(twm), sigma(twm2), tolerance = 1e-1)
expect_equal(ranef(twm),
structure(list(cond = list(), zi = list(), disp = list()), class = "ranef.glmmTMB"))
})
test_that("gaussian_sqrt", {
set.seed(101)
nobs <- 200
dd0_sqrt <- simfun0(nobs=nobs,sd.re=1,invlink=function(x) x^2)
dd0_sqrt$y <- rnorm(nobs,mean=dd0_sqrt$mu,sd=0.1)
g1 <- glmmTMB(y~x+(1|f), family=gaussian(link="sqrt"),
data=dd0_sqrt)
expect_equal(fixef(g1),
structure(list(cond = c(`(Intercept)` = 2.03810165917618, x = 1.00241002916226
), zi = numeric(0), disp = c(`(Intercept)` = -2.341751)),
class = "fixef.glmmTMB"),
tolerance = 1e-6)
})
test_that("link function info available", {
fam1 <- c("poisson","nbinom1","nbinom2","compois")
fam2 <- c("binomial","beta_family","betabinomial","tweedie")
for (f in c(fam1,paste0("truncated_",fam1),fam2)) {
## print(f)
expect_true("linkinv" %in% names(get(f)()))
}
})
d.AD <- data.frame(counts=c(18,17,15,20,10,20,25,13,12),
outcome=gl(3,1,9),
treatment=gl(3,3))
glm.D93 <- glmmTMB(counts ~ outcome + treatment, family = poisson(), data=d.AD)
glm.D93C <- glmmTMB(counts ~ outcome + treatment, family = "poisson", data=d.AD)
test_that("link info added to family", {
expect_warning(glm.D93B <- glmmTMB(counts ~ outcome + treatment,
family = list(family="poisson", link="log"),
d.AD))
## note update(..., family= ...) is only equal up to tolerance=5e-5 ...
expect_equal(predict(glm.D93),predict(glm.D93B))
expect_equal(predict(glm.D93),predict(glm.D93C))
})
test_that("lognormal family", {
test_fun <- function(n, m, v) {
x <- rnorm(n, mean=m, sd=sqrt(v))
dd <- data.frame(y=exp(x))
m1 <- glmmTMB(y~1, family="lognormal", data=dd)
m2 <- glmmTMB(log(y) ~ 1, data = dd)
expect_equal(logLik(m1), logLik(m2)-sum(log(dd$y)))
## noisy because of expected vs observed mean/variance
expect_equal(unname(fixef(m1)$cond), m+v/2, tolerance = 1e-2)
expect_equal(sigma(m1), sqrt((exp(v)-1)*exp(2*m+v)), tolerance = 5e-2)
}
set.seed(102)
test_fun(n = 2e4, m = 0.4, v = 0.2)
test_fun(n = 2e4, m = 0.7, v = 0.5)
set.seed(101)
dd <- data.frame(y = c(0, rlnorm(100, 1, 1)))
expect_is(glmmTMB(y ~ 1, data = dd, family = lognormal(), ziformula = ~1),
"glmmTMB")
expect_error(glmmTMB(y ~ 1, data = dd, family = lognormal()),
"must be > 0 ")
dd <- rbind(dd, data.frame(y=-1))
expect_error(glmmTMB(y ~ 1, data = dd, family = lognormal(), ziformula = ~1),
"must be >= 0")
})
test_that("t-distributed response", {
set.seed(101)
dd <- data.frame(y = 3 + 5*rt(1000, df = 10))
m1 <- glmmTMB(y ~ 1, family = t_family, data = dd)
expect_equal(unname(fixef(m1)$cond), 2.89682907080939,
tolerance = 1e-6)
expect_equal(sigma(m1), 4.96427774321411,
tolerance = 1e-6)
m2 <- glmmTMB(y ~ 1, family = t_family, data = dd,
start = list(psi = log(10)),
map = list(psi = factor(NA)))
expect_equal(sigma(m2), 5.01338678750139,
tolerance = 1e-6)
})
test_that("nbinom12 family", {
set.seed(101)
n <- 10000
x <- rnorm(n)
mu <- exp(2 + 1*x)
vv <- mu*(1+2+mu/0.5)
k <- mu/(vv/mu - 1)
dd <- data.frame(x, y = rnbinom(n, mu = mu, size = k))
m1 <- glmmTMB(y ~ x, family = nbinom12, data = dd)
## basic test
## should have phi = 2, k = 0.5
## log(phi) ~ 0.7, log(psi) ~ -0.7
expect_equal( m1$obj$env$last.par.best,
c(beta = 1.98948426828242, beta = 1.00635151325394,
betadisp = 0.68344614610532, psi = -0.686823594633112),
tolerance = 1e-6)
expect_equal(sigma(m1), 1.980692, tolerance = 1e-6)
})
test_that("skewnormal family", {
dd <- data.frame(dummy = rep(1, 500))
dd$y <- simulate_new(~1,
newdata = dd,
newparams = list(beta = -1,
betadisp = 3,
psi = -5),
seed = 101,
family = "skewnormal")[[1]]
expect_equal(range(dd$y), c(-64.8363758099827, 32.87734399648))
expect_equal(length(unique(dd$y)), 500L)
fit <- glmmTMB(y ~ 1,
data = dd,
family = "skewnormal",
start = list(betadisp = log(sd(dd$y)),
psi = -5))
expect_equal(fit$obj$env$last.par.best,
c(beta = 0.0765490512716489,
betadisp = 2.94927708520387,
psi = -6.12362878509844),
tolerance = 1e-6)
expect_equal(family_params(fit),
c(`Skewnormal shape` = -6.12362878509844),
tolerance = 1e-6)
})
|