1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
|
---
title: "Covariance structures with glmmTMB"
author: "Kasper Kristensen and Maeve McGillycuddy"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
bibliography: glmmTMB.bib
vignette: >
%\VignetteIndexEntry{Covariance structures with glmmTMB}
%\VignettePackage{glmmTMB}
%\VignetteEngine{knitr::rmarkdown}
\usepackage[utf8]{inputenc}
params:
EVAL: !r identical(Sys.getenv("NOT_CRAN"), "true")
---
```{r setup, include=FALSE, message=FALSE}
library(knitr)
library(glmmTMB)
library(MASS) ## for mvrnorm()
library(TMB) ## for tmbprofile()
library(mvabund) ## for spider data
## devtools::install_github("kaskr/adcomp/TMB") ## get development version
knitr::opts_chunk$set(echo = TRUE, eval=if (exists("params")) params$EVAL else FALSE)
do_image <- exists("params") && params$EVAL
## want to *store* images within package
save_vig_dir <- file.path("inst","vignette_data")
pkg_dir <- "glmmTMB"
## guess where we are ...
if (grepl("/vignettes$",getwd())) { ## in vignettes dir
save_vig_dir <- file.path("../",save_vig_dir)
} else if (grepl(paste0("/",pkg_dir,"$"),getwd())) { ## in repo head
save_vig_dir <- file.path(pkg_dir,save_vig_dir)
}
## want to *retrieve* images from system files
use_vig_dir <- system.file("vignette_data",package="glmmTMB")
mkfig <- function(expr,fn) {
png(normalizePath(file.path(save_vig_dir,fn)))
eval(substitute(expr))
invisible(dev.off())
}
usefig <- function(fn) {
knitr::include_graphics(file.path(use_vig_dir,fn))
}
## turned off caching for now: got error in chunk 'fit.us.2'
## Error in retape() :
## Error when reading the variable: 'thetaf'. Please check data and parameters.
## In addition: Warning message:
## In retape() : Expected object. Got NULL.
set.seed(1)
## run this in interactive session if you actually want to evaluate chunks ...
## Sys.setenv(NOT_CRAN="true")
```
This vignette demonstrates some of the covariance structures available in the `glmmTMB` package.
Currently the available covariance structures are:
| Covariance | Notation | Parameter count | Requirement |
|----------------------------------|---------------|-----------------|-------------|
| Heterogeneous unstructured | `us` | $n(n+1)/2$ | |
| Heterogeneous Toeplitz | `toep` | $2n-1$ | |
| Heterogeneous compound symmetry | `cs` | $n+1$ | |
| Heterogeneous diagonal | `diag` | $n$ | |
| AR(1) | `ar1` | $2$ | Unit spaced levels |
| Ornstein-Uhlenbeck | `ou` | $2$ | Coordinates |
| Spatial exponential | `exp` | $2$ | Coordinates |
| Spatial Gaussian | `gau` | $2$ | Coordinates |
| Spatial Matern | `mat` | $3$ | Coordinates |
| Reduced rank | `rr` | $nd-d(d-1)/2$ | rank (d) |
The word 'heterogeneous' refers to the marginal variances of the
model. Beyond correlation parameters, a heterogeneous structure uses
$n$ additional variance parameters where $n$ is the dimension.
Some of the structures require temporal or spatial coordinates. We
will show examples of this in a later section.
## The AR(1) covariance structure
### Demonstration on simulated data
First, let's consider a simple time series model. Assume that our
measurements $Y(t)$ are given at discrete times $t \in \{1,...,n\}$ by
$$Y(t) = \mu + X(t) + \varepsilon(t)$$
where
- $\mu$ is the mean value parameter.
- $X(t)$ is a stationary AR(1) process, i.e. has covariance $cov(X(s),
X(t)) = \sigma^2\exp(-\theta |t-s|)$.
- $\varepsilon(t)$ is iid. $N(0,\sigma_0^2)$ measurement error.
A simulation experiment is set up using the parameters
| Description | Parameter | Value |
|------------------------|---------------|-------|
| Mean | $\mu$ | 0 |
| Process variance | $\sigma^2$ | 1 |
| Measurement variance | $\sigma_0^2$ | 1 |
| One-step correlation | $e^{-\theta}$ | 0.7 |
The following R-code draws a simulation based on these parameter
values. For illustration purposes we consider a very short time
series.
```{r sim1, eval=TRUE}
n <- 6 ## Number of time points
x <- mvrnorm(mu = rep(0,n),
Sigma = .7 ^ as.matrix(dist(1:n)) ) ## Simulate the process using the MASS package
y <- x + rnorm(n) ## Add measurement noise
```
In order to fit the model with `glmmTMB` we must first specify a time
variable as a *factor*. The factor *levels* correspond to unit spaced
time points.
It is a common mistake to forget some factor levels due to missing
data or to order the levels incorrectly. We therefore recommend to
construct factors with explicit levels, using the `levels` argument to
the `factor` function:
```{r simtimes}
times <- factor(1:n, levels=1:n)
levels(times)
```
We also need a grouping variable. In the current case there is only
one time-series so the grouping is:
```{r simgroup}
group <- factor(rep(1,n))
```
We combine the data into a single data frame (not absolutely
required, but good practice):
```{r simcomb}
dat0 <- data.frame(y,times,group)
```
Now fit the model using
```{r fitar1, eval=FALSE}
glmmTMB(y ~ ar1(times + 0 | group), data=dat0)
```
This formula notation follows that of the `lme4` package.
- The left hand side of the bar `times + 0` corresponds to a design
matrix $Z$ linking observation vector $y$ (rows) with a random
effects vector $u$ (columns).
- The distribution of $u$ is `ar1` (this is the only `glmmTMB`
specific part of the formula).
- The right hand side of the bar splits the above specification
independently among groups. Each group has its own separate $u$
vector but shares the same parameters for the covariance structure.
After running the model, we find the parameter estimates $\mu$
(intercept), $\sigma_0^2$ (dispersion), $\sigma$ (Std. Dev.) and
$e^{-\theta}$ (First off-diagonal of "Corr") in the output:
> FIXME: Try a longer time series when the print.VarCorr is fixed.
```{r ar0fit,echo=FALSE}
glmmTMB(y ~ ar1(times + 0 | group), data=dat0)
```
### Increasing the sample size
A single time series of 6 time points is not sufficient to identify
the parameters. We could either increase the length of the time series
or increase the number of groups. We'll try the latter:
```{r simGroup}
simGroup <- function(g, n=6, rho=0.7) {
x <- mvrnorm(mu = rep(0,n),
Sigma = rho ^ as.matrix(dist(1:n)) ) ## Simulate the process
y <- x + rnorm(n) ## Add measurement noise
times <- factor(1:n)
group <- factor(rep(g,n))
data.frame(y, times, group)
}
simGroup(1)
```
Generate a dataset with 1000 groups:
```{r simGroup2}
dat1 <- do.call("rbind", lapply(1:1000, simGroup) )
```
And fitting the model on this larger dataset gives estimates close to
the true values (AR standard deviation=1, residual (measurement) standard deviation=1, autocorrelation=0.7):
```{r fit.ar1}
(fit.ar1 <- glmmTMB(y ~ ar1(times + 0 | group), data=dat1))
```
## The unstructured covariance
We can try to fit an unstructured covariance to the previous dataset
`dat`. For this case an unstructured covariance has `r (n*n-n)/2`
correlation parameters and `r n` variance parameters. Adding
$\sigma_0^2 I$ on top would cause a strict
overparameterization, as these would be redundant with the diagonal
elements in the covariance matrix. Hence, when fitting the model with `glmmTMB`, we have to disable the $\varepsilon$ term (the dispersion) by setting `dispformula=~0`:
```{r fit.us}
fit.us <- glmmTMB(y ~ us(times + 0 | group), data=dat1, dispformula=~0)
fit.us$sdr$pdHess ## Converged ?
```
The estimated variance and correlation parameters are:
```{r fit.us.vc}
VarCorr(fit.us)
```
\newcommand{\textsub}[2]{#1_{{\text {#2}}}}
The estimated correlation is approximately constant along diagonals
(apparent Toeplitz structure) and we note that the first off-diagonal
is now ca. half the true value (0.7) because the dispersion is
effectively included in the estimated covariance matrix (i.e. $\rho' = \rho \textsub{\sigma^2}{AR}/(\textsub{\sigma^2}{AR} + \textsub{\sigma^2}{meas})$).
## The Toeplitz structure
The next natural step would be to reduce the number of parameters by
collecting correlation parameters within the same off-diagonal. This
amounts to `r (n-1)` correlation parameters and `r n` variance
parameters.
> FIXME: Explain why dispformula=~1 causes over-parameterization
```{r fit.toep}
fit.toep <- glmmTMB(y ~ toep(times + 0 | group), data=dat1, dispformula=~0)
fit.toep$sdr$pdHess ## Converged ?
```
The estimated variance and correlation parameters are:
```{r fit.toep.vc}
(vc.toep <- VarCorr(fit.toep))
```
The diagonal elements are all approximately equal to the true total variance ($\textsub{\sigma^2}{AR} + \textsub{\sigma^2}{meas}$=2), and the off-diagonal elements are approximately equal to the expected value of 0.7/2=0.35.
```{r fit.toep.vc.diag}
vc1 <- vc.toep$cond[[1]] ## first term of var-cov for RE of conditional model
summary(diag(vc1))
summary(vc1[row(vc1)!=col(vc1)])
```
We can get a *slightly* better estimate of the variance by using REML estimation (however, the estimate of the correlations seems to have gotten slightly worse):
```{r fit.toep.reml}
fit.toep.reml <- update(fit.toep, REML=TRUE)
vc1R <- VarCorr(fit.toep.reml)$cond[[1]]
summary(diag(vc1R))
summary(vc1R[row(vc1R)!=col(vc1R)])
```
## Compound symmetry
The compound symmetry structure collects all off-diagonal elements of
the correlation matrix to one common value.
> FIXME: Explain why dispformula=~1 causes over-parameterization
```{r fit.cs}
fit.cs <- glmmTMB(y ~ cs(times + 0 | group), data=dat1, dispformula=~0)
fit.cs$sdr$pdHess ## Converged ?
```
The estimated variance and correlation parameters are:
```{r fit.cs.vc}
VarCorr(fit.cs)
```
## Anova tables
The models `ar1`, `toep`, and `us` are nested so we can use:
```{r anova1}
anova(fit.ar1, fit.toep, fit.us)
```
`ar1` has the lowest AIC (it's the simplest model, and fits the data adequately); we can't reject the (true in this case!) null model that an AR1 structure is adequate to describe the data.
The model `cs` is a sub-model of `toep`:
```{r anova2}
anova(fit.cs, fit.toep)
```
Here we *can* reject the null hypothesis of compound symmetry (i.e., that all the pairwise correlations are the same).
## Adding coordinate information
Coordinate information can be added to a variable using the `glmmTMB`
function `numFactor`. This is necessary in order to use those
covariance structures that require coordinates. For example, if we
have the numeric coordinates
```{r sample2}
x <- sample(1:2, 10, replace=TRUE)
y <- sample(1:2, 10, replace=TRUE)
```
we can generate a factor representing $(x,y)$ coordinates by
```{r numFactor}
(pos <- numFactor(x,y))
```
Numeric coordinates can be recovered from the factor levels:
```{r parseNumLevels}
parseNumLevels(levels(pos))
```
In order to try the remaining structures on our test data we
re-interpret the time factor using `numFactor`:
```{r numFactor2}
dat1$times <- numFactor(dat1$times)
levels(dat1$times)
```
## Ornstein–Uhlenbeck
Having the numeric times encoded in the factor levels we can now try
the Ornstein–Uhlenbeck covariance structure.
```{r fit.ou}
fit.ou <- glmmTMB(y ~ ou(times + 0 | group), data=dat1)
fit.ou$sdr$pdHess ## Converged ?
```
It should give the exact same results as `ar1` in this case since the
times are equidistant:
```{r fit.ou.vc}
VarCorr(fit.ou)
```
However, note the differences between `ou` and `ar1`:
- `ou` can handle irregular time points.
- `ou` only allows positive correlation between neighboring time points.
## Spatial correlations
The structures `exp`, `gau` and `mat` are meant to used for spatial
data. They all require a Euclidean distance matrix which is calculated
internally based on the coordinates. Here, we will try these models on
the simulated time series data.
An example with spatial data is presented in a later section.
### Matern
```{r fit.mat}
fit.mat <- glmmTMB(y ~ mat(times + 0 | group), data=dat1, dispformula=~0)
fit.mat$sdr$pdHess ## Converged ?
```
```{r fit.mat.vc}
VarCorr(fit.mat)
```
### Gaussian
"Gaussian" refers here to a Gaussian decay in correlation with distance,
i.e. $\rho = \exp(-d x^2)$, not to the conditional distribution ("family").
```{r fit.gau}
fit.gau <- glmmTMB(y ~ gau(times + 0 | group), data=dat1, dispformula=~0)
fit.gau$sdr$pdHess ## Converged ?
```
```{r fit.gau.vc}
VarCorr(fit.gau)
```
### Exponential
```{r fit.exp}
fit.exp <- glmmTMB(y ~ exp(times + 0 | group), data=dat1)
fit.exp$sdr$pdHess ## Converged ?
```
```{r fit.exp.vc}
VarCorr(fit.exp)
```
### A spatial covariance example
Starting out with the built in `volcano` dataset we reshape it to a
`data.frame` with pixel intensity `z` and pixel position `x` and `y`:
```{r spatial_data}
d <- data.frame(z = as.vector(volcano),
x = as.vector(row(volcano)),
y = as.vector(col(volcano)))
```
Next, add random normal noise to the pixel intensities and extract a
small subset of 100 pixels. This is our spatial dataset:
```{r spatial_sub_sample}
set.seed(1)
d$z <- d$z + rnorm(length(volcano), sd=15)
d <- d[sample(nrow(d), 100), ]
```
Display sampled noisy volcano data:
<!-- never evaluate -->
```{r volcano_data_image_fake,eval=FALSE}
volcano.data <- array(NA, dim(volcano))
volcano.data[cbind(d$x, d$y)] <- d$z
image(volcano.data, main="Spatial data", useRaster=TRUE)
```
<!-- evaluate if NOT_CRAN -->
```{r volcano_data_image_real,echo=FALSE}
if (do_image) {
volcano.data <- array(NA, dim(volcano))
volcano.data[cbind(d$x, d$y)] <- d$z
mkfig(image(volcano.data, main="Spatial data"),"volcano_data.png")
}
```
<!-- always evaluate -->
```{r volcano_image,eval=TRUE,echo=FALSE}
usefig("volcano_data.png")
```
Based on this data, we'll attempt to re-construct the original image.
As model, it is assumed that the original image `image(volcano)` is a
realization of a random field with correlation decaying exponentially
with distance between pixels.
Denoting by $u(x,y)$ this random field the model for the observations is
\[ z_{i} = \mu + u(x_i,y_i) + \varepsilon_i \]
To fit the model, a `numFactor` and a dummy grouping variable must be
added to the dataset:
```{r spatial_add_pos_and_group}
d$pos <- numFactor(d$x, d$y)
d$group <- factor(rep(1, nrow(d)))
```
The model is fit by
```{r fit_spatial_model, cache=TRUE}
f <- glmmTMB(z ~ 1 + exp(pos + 0 | group), data=d)
```
Recall that a standard deviation `sd=15` was used to distort the
image. A confidence interval for this parameter is
```{r confint_sigma}
confint(f, "sigma")
```
The glmmTMB `predict` method can predict unseen levels of the random
effects. For instance to predict a 3-by-3 corner of the image one
could construct the new data:
```{r newdata_corner}
newdata <- data.frame( pos=numFactor(expand.grid(x=1:3,y=1:3)) )
newdata$group <- factor(rep(1, nrow(newdata)))
newdata
```
and predict using
```{r predict_corner}
predict(f, newdata, type="response", allow.new.levels=TRUE)
```
A specific image column can thus be predicted using the function
```{r predict_column}
predict_col <- function(i) {
newdata <- data.frame( pos = numFactor(expand.grid(1:87,i)))
newdata$group <- factor(rep(1,nrow(newdata)))
predict(f, newdata=newdata, type="response", allow.new.levels=TRUE)
}
```
Prediction of the entire image is carried out by (this takes a while...):
```{r predict_all}
pred <- sapply(1:61, predict_col)
```
Finally plot the re-constructed image by
```{r image_results_fake,eval=FALSE}
image(pred, main="Reconstruction")
```
```{r image_results_real,echo=FALSE}
if (do_image) {
mkfig(image(pred, main="Reconstruction", useRaster=TRUE),
"volcano_results.png")
}
```
```{r results_image,eval=TRUE,echo=FALSE}
usefig("volcano_results.png")
```
## Mappings
For various advanced purposes, such as computing likelihood profiles, it is useful
to know the details of the parameterization of the models - the scale on which
the parameters are defined (e.g. standard deviation, variance, or log-standard deviation
for variance parameters) and their order.
### Unstructured
For an unstructured matrix of size `n`, parameters `1:n` represent the log-standard deviations while the remaining `n(n-1)/2` (i.e. `(n+1):(n:(n*(n+1)/2))`) are the elements of the *scaled* Cholesky factor of the correlation matrix, filled in row-wise order (see [TMB documentation](http://kaskr.github.io/adcomp/classdensity_1_1UNSTRUCTURED__CORR__t.html)). In particular, if $L$ is the lower-triangular matrix with 1 on the diagonal and the correlation parameters in the lower triangle, then the correlation matrix is defined as $\Sigma = D^{-1/2} L L^\top D^{-1/2}$, where $D = \textrm{diag}(L L^\top)$. For a single correlation parameter $\theta_0$, this works out to $\rho = \theta_0/\sqrt{1+\theta_0^2}$.
(See calculations [here](https://github.com/glmmTMB/glmmTMB/blob/master/misc/glmmTMB_corcalcs.ipynb).)
```{r fit.us.2}
vv0 <- VarCorr(fit.us)
vv1 <- vv0$cond$group ## extract 'naked' V-C matrix
n <- nrow(vv1)
rpars <- getME(fit.us,"theta") ## extract V-C parameters
## first n parameters are log-std devs:
all.equal(unname(diag(vv1)),exp(rpars[1:n])^2)
## now try correlation parameters:
cpars <- rpars[-(1:n)]
length(cpars)==n*(n-1)/2 ## the expected number
cc <- diag(n)
cc[upper.tri(cc)] <- cpars
L <- crossprod(cc)
D <- diag(1/sqrt(diag(L)))
round(D %*% L %*% D,3)
round(unname(attr(vv1,"correlation")),3)
```
```{r other_check}
all.equal(c(cov2cor(vv1)),c(fit.us$obj$env$report(fit.us$fit$parfull)$corr[[1]]))
```
Profiling (experimental/exploratory):
```{r fit.us.profile,cache=TRUE}
## want $par, not $parfull: do NOT include conditional modes/'b' parameters
ppar <- fit.us$fit$par
length(ppar)
range(which(names(ppar)=="theta")) ## the last n*(n+1)/2 parameters
## only 1 fixed effect parameter
tt <- tmbprofile(fit.us$obj,2,trace=FALSE)
```
```{r fit.us.profile.plot_fake,eval=FALSE}
confint(tt)
plot(tt)
```
```{r fit.us.profile.plot_real,echo=FALSE}
mkfig(plot(tt),"us_profile_plot.png")
```
```{r us_profile_image,eval=TRUE,echo=FALSE}
usefig("us_profile_plot.png")
```
```{r fit.cs.profile,cache=TRUE}
ppar <- fit.cs$fit$par
length(ppar)
range(which(names(ppar)=="theta")) ## the last n*(n+1)/2 parameters
## only 1 fixed effect parameter, 1 dispersion parameter
tt2 <- tmbprofile(fit.cs$obj,3,trace=FALSE)
```
```{r fit.cs.profile.plot_fake,eval=FALSE}
plot(tt2)
```
```{r fit.cs.profile.plot_real,echo=FALSE}
mkfig(plot(tt2),"cs_profile_plot.png")
```
```{r fit.cs.profile_image,echo=FALSE,eval=TRUE}
usefig("cs_profile_plot.png")
```
## General latent variable model
Consider a generalized linear mixed model
\begin{equation}
g(\boldsymbol{\mu}) = \boldsymbol{X\beta} + \boldsymbol{Zb}
\end{equation}
where $g(.)$ is the link function; $\boldsymbol{\beta}$ is a p-dimensional vector of regression coefficients related to the covariates; $\boldsymbol{X}$ is an $n \times p$ model matrix; and $\boldsymbol{Z}$ is the $n\times q$ model matrix for the $q$-dimensional vector-valued random effects variable $\boldsymbol{U}$ which is multivariate normal with mean zero and a parameterized $q \times q$ variance-covariance matrix, $\boldsymbol{\Sigma}$, i.e., $\boldsymbol{U} \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$.
A general latent variable model (GLVM) requires many fewer parameters for the variance-covariance matrix, $\boldsymbol{\Sigma}$. To a fit a GLVM we add a *reduced-rank* (rr) covariance structure, so the model becomes
<!-- -->
\begin{align}
g(\boldsymbol{\mu}) &= \boldsymbol{X\beta} + \boldsymbol{Z(I_n \otimes \Lambda)b} \\
&= \boldsymbol{X\beta} + \boldsymbol{Zb_{new}}
\end{align}
<!-- -->
where $\otimes$ is the Kronecker product and $\boldsymbol{\Lambda} = (\boldsymbol{\lambda_1}, \ldots, \boldsymbol{\lambda_d})'$ is the $q \times d$ matrix of factor loadings (with $d \ll q$). The upper triangular elements of $\boldsymbol{\Lambda}$ are set to be zero to ensure parameter identifiability. Here we assume that the latent variables follow a multivariate standard normal distribution, $\boldsymbol{b} \sim N(\boldsymbol{0}, \boldsymbol{I})$.
For GLVMs it is important to select initial starting values for the parameters because the observed likelihood may be multimodal, and maximization algorithms can end up in local maxima. @niku2019gllvm describe methods to enable faster and more reliable fits of latent variable models by carefully choosing starting values of the parameters.
A similar method has been implemented in `glmmTMB`. A generalized linear model is fitted to the data to obtain initial starting values for the fixed parameters in the model. Residuals from the fitted GLM are calculated; Dunn-Smyth residuals are calculated for common families while residuals from the `dev.resids()` function are used otherwise. Initial starting values for the latent variables and their loadings are obtained by fitting a reduced rank model to the residuals.
### Reduced rank
One of our main motivations for adding this variance-covariance structure is to enable the analysis of multivariate abundance data, for example to model the abundance of different taxa across multiple sites. Typically an unstructured random effect is assumed to account for correlation between taxa; however the number of parameters required quickly becomes large with increasing numbers of taxa. A GLVM is a flexible and more parsimonious way to account for correlation so that one can fit a joint model across many taxa.
A GLVM can be fit by specifying a reduced rank (`rr`) covariance structure. For example, the code for modeling the mean abundance against taxa and to account for the correlation between taxa using two latent variables is as follows
```{r rr_ex, eval = FALSE}
if (require(mvabund)) {
data(spider)
## organize data into long format
sppTot <- sort(colSums(spider$abund), decreasing = TRUE)
tmp <- cbind(spider$abund, spider$x)
tmp$id <- 1:nrow(tmp)
spiderDat <- reshape(tmp,
idvar = "id",
timevar = "Species",
times = colnames(spider$abund),
varying = list(colnames(spider$abund)),
v.names = "abund",
direction = "long")
## fit rank-reduced models with varying dimension
fit_list <- lapply(2:10,
function(d) {
fit.rr <- glmmTMB(abund ~ Species + rr(Species + 0|id, d = d),
data = spiderDat)
})
## compare fits via AIC
aic_vec <- sapply(fit_list, AIC)
aic_vec - min(aic_vec, na.rm = TRUE)
```
The left hand side of the bar `taxa + 0` corresponds to a factor loading matrix that accounts for the correlations among taxa. The right hand side of the bar splits the above specification independently among sites. The `d` is a non-negative integer (which defaults to 2).
An option in `glmmTMBControl()` has been included to initialize the starting values for the parameters based on the approach mentioned above with the default set at `glmmTMBControl(start_method = list(method = NULL, jitter.sd = 0)`:
- `method = "res"` initializes starting values from the results of fitting a GLM, and fitting a reduced rank model to the residuals to obtain starting values for the fixed coefficients, the latent variables and the factor loadings.
- `jitter.sd` adds variation to the starting values of latent variables when `method = "res"` (default 0).
For a reduced rank matrix of rank `d`, parameters `1:d` represent the diagonal factor loadings while the remaining `$nd-d(d-3)/2$`, (i.e. `(d+1):(nd-d(d-1)/2`) are the lower diagonal factor loadings filled in column-wise order. The factor loadings from a model can be obtained by `fit.rr$obj$env$report(fit.rr$fit$parfull)$fact_load[[1]]`. An appropriate rank for the model can be determined by standard model selection approaches such as information criteria (e.g. AIC or BIC) [@hui2015model].
## References
|