File: model_evaluation.Rnw

package info (click to toggle)
r-cran-glmmtmb 1.1.5%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 5,504 kB
  • sloc: cpp: 1,018; sh: 16; makefile: 9
file content (459 lines) | stat: -rw-r--r-- 16,092 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
\documentclass[12pt]{article}
%% vignette index specifications need to be *after* \documentclass{}
%\VignetteEngine{knitr::knitr}
%\VignetteIndexEntry{model evaluation}
%\VignettePackage{glmmTMB}
%\VignetteDepends{ggplot2}
%\VignetteDepends{car}
%\VignetteDepends{emmeans}
%\VignetteDepends{effects}
%\VignetteDepends{multcomp}
%\VignetteDepends{MuMIn}
%\VignetteDepends{DHARMa}
%\VignetteDepends{broom}
%\VignetteDepends{broom.mixed}
%\VignetteDepends{dotwhisker}
%\VignetteDepends{texreg}
%\VignetteDepends{xtable}
%\VignetteDepends{huxtable}
\usepackage{lineno}
\usepackage[utf8]{inputenc}
\usepackage{graphicx}
\usepackage[american]{babel}
%% for huxtable
\usepackage{array}
\usepackage{caption}
\usepackage{graphicx}
%% siunitx is needed for *some* huxtable functions,
%%  but messes up Solaris tests
%% \usepackage{siunitx}
\usepackage{colortbl}
\usepackage{multirow}
\usepackage{hhline}
\usepackage{calc}
\usepackage{tabularx}
\usepackage{threeparttable} % maybe not available elsewhere?
\usepackage{wrapfig}
\usepackage{adjustbox}
\newcommand{\R}{{\sf R}}
\newcommand{\fixme}[1]{\textbf{\color{red} fixme: #1}}
\newcommand{\notimpl}[1]{\emph{\color{magenta} #1}}
\usepackage{url}
\usepackage{hyperref}
\usepackage{fancyvrb}
\usepackage{natbib}
%% \code{} below is not safe with \section{} etc.
\newcommand{\tcode}[1]{{\tt #1}}
\VerbatimFootnotes
\bibliographystyle{chicago}
%% need this for output of citation() below ...
\newcommand{\bold}[1]{\textbf{#1}}
%% code formatting
%% https://tex.stackexchange.com/questions/273843/inline-verbatim-with-line-breaks-colored-font-and-highlighting/280212
% \usepackage{xcolor} %% see knit_hooks$set(...) below
\newcommand\code[1]{\mytokenshelp#1 \relax\relax}
\def\mytokenshelp#1 #2\relax{\allowbreak\grayspace\tokenscolor{#1}\ifx\relax#2\else
 \mytokenshelp#2\relax\fi}
%\newcommand\tokenscolor[1]{\colorbox{gray!20}{\textcolor{blue}{%
%  \ttfamily\mystrut\smash{\detokenize{#1}}}}}
\newcommand\tokenscolor[1]{\colorbox{gray!0}{\textcolor{black}{%
  \ttfamily\mystrut\smash{\detokenize{#1}}}}}

\def\mystrut{\rule[\dimexpr-\dp\strutbox+\fboxsep]{0pt}{%
 \dimexpr\normalbaselineskip-2\fboxsep}}
\def\grayspace{\hspace{0pt minus \fboxsep}}

\title{Post-model-fitting procedures with \tcode{glmmTMB} models: diagnostics, inference, and model output}
\date{\today}
\author{}
\begin{document}
\maketitle

%\linenumbers
%% FIXME: pipeline for re-running stored objects
%% FIXME: improve owls fit so DHARMa looks OK?
%% FIXME: fix broom.mixed:tidy method
%% FIXME: huxtable issues

<<setopts,echo=FALSE,message=FALSE>>=
library("knitr")
opts_chunk$set(fig.width=5,fig.height=5,
               error=FALSE,
               out.width="0.8\\textwidth",echo=TRUE)
## https://tex.stackexchange.com/questions/148188/knitr-xcolor-incompatible-color-definition/254482
knit_hooks$set(document = function(x) {sub('\\usepackage[]{color}', '\\usepackage{xcolor}', x, fixed = TRUE)})
Rver <- paste(R.version$major,R.version$minor,sep=".")
used.pkgs <- c("glmmTMB","bbmle")  ## packages to report below
@ 

<<solaris_check, echo=FALSE>>=
## https://stackoverflow.com/questions/23840523/check-if-os-is-solaris
is.solaris <- function() {
  grepl('SunOS', Sys.info()['sysname'])
}
is.windows <- function() {
  .Platform$OS.type == "windows"
}
is.cran <- function() {
  !identical(Sys.getenv("NOT_CRAN"), "true")
}
huxtable_OK <- (!is.solaris()) && !(is.windows() && is.cran())
@

The purpose of this vignette is to describe (and test) the
functions in various downstream packages that are available for summarizing
and otherwise interpreting glmmTMB fits.
Some of the packages/functions discussed below may
not be suitable for inference on parameters of
the zero-inflation or dispersion
models, but will be restricted to the conditional-mean model.

<<packages,message=FALSE>>=
library(glmmTMB)
library(car)
library(emmeans)
library(effects)
library(multcomp)
library(MuMIn)
require(DHARMa, quietly = TRUE) ## may be missing ...
library(broom)
library(broom.mixed)
require(dotwhisker, quietly = TRUE)
library(ggplot2); theme_set(theme_bw())
library(texreg)
library(xtable)
if (huxtable_OK) library(huxtable)
## retrieve slow stuff
L <- gt_load("vignette_data/model_evaluation.rda")
@

A couple of example models:

% don't need to evaluate this since we have loaded owls_nb1 from model_evaluation.rda
<<examples,eval=TRUE>>=
owls_nb1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent +
                        (1|Nest)+offset(log(BroodSize)),
                    contrasts=list(FoodTreatment="contr.sum",
                                   SexParent="contr.sum"),
                    family = nbinom1,
                    zi = ~1, data=Owls)
@

<<fit_model3,cache=TRUE>>=
data("cbpp",package="lme4")
cbpp_b1 <- glmmTMB(incidence/size~period+(1|herd),
                   weights=size,family=binomial,
                   data=cbpp)
## simulated three-term Beta example
set.seed(1001)
dd <- data.frame(z=rbeta(1000,shape1=2,shape2=3),
                 a=rnorm(1000),b=rnorm(1000),c=rnorm(1000))
simex_b1 <- glmmTMB(z~a*b*c,family=beta_family,data=dd)
@

\section{model checking and diagnostics}

\subsection{\tcode{DHARMa}}

The \code{DHARMa} package provides diagnostics for hierarchical models. After running

% set to eval=FALSE since we have this stored in model_evaluation.rda
<<dharma_sim,eval=FALSE,message=FALSE>>=
owls_nb1_simres <- simulateResiduals(owls_nb1)
@

you can plot the results:

<<fake_dharma_plotfig, eval=FALSE>>=
plot(owls_nb1_simres)
@

<<dharma_plotfig,fig.width=8,fig.height=4, echo=FALSE>>=
if (require(DHARMa, quietly = TRUE)) plot(owls_nb1_simres)
@

\code{DHARMa} provides lots of other methods based on the simulated residuals:
see \tcode{vignette("DHARMa", package="DHARMa")}

\subsubsection{issues}

\begin{itemize}
\item \code{DHARMa} will only work for models using families for which a simulate method has been implemented (in \code{TMB}, and appropriately reflected in \code{glmmTMB})
\end{itemize}

\section{Inference}

\subsection{\tcode{car::Anova}}

We can use \code{car::Anova()} to get traditional ANOVA-style tables from \code{glmmTMB} fits. A few limitations/reminders:

\begin{itemize}
\item these tables use Wald $\chi^2$ statistics for comparisons (neither likelihood ratio tests nor $F$ tests)
\item they apply to the fixed effects of the conditional component of the model only (other components \emph{might} work, but haven't been tested at all)
\item as always, if you want to do type 3 tests, you should probably set sum-to-zero contrasts on factors and center numerical covariates (see \code{contrasts} argument above)
\end{itemize}

<<caranova1>>=
if (requireNamespace("car") && getRversion() >= "3.6.0") {
    Anova(owls_nb1)  ## default type II
    Anova(owls_nb1,type="III")
}
@


\subsection{effects}

<<effects1,fig.width=8,fig.height=4>>=
effects_ok <- (requireNamespace("effects") && getRversion() >= "3.6.0")
if (effects_ok) {
    (ae <- allEffects(owls_nb1))
    plot(ae)
}
@

(the error can probably be ignored)

<<effects2, fig.width=12,fig.height=12>>=
if (effects_ok) {
  plot(allEffects(simex_b1))
}
@


\subsection{\tcode{emmeans}}

<<emmeans1>>=
emmeans(owls_nb1, poly ~ FoodTreatment | SexParent)
@

\subsection{\tcode{drop1}}

\code{stats::drop1} is a built-in R function that refits the model with various terms dropped. In its default mode it respects marginality (i.e., it will only drop the top-level interactions, not the main effects):

<<drop1_eval,cache=TRUE>>=
system.time(owls_nb1_d1 <- drop1(owls_nb1,test="Chisq"))
@
<<print_drop1>>=
print(owls_nb1_d1)
@

In principle, using \code{scope = . ~ . - (1|Nest)} should work to execute a ``type-3-like'' series of tests, dropping the main effects one at a time while leaving the interaction in (we have to use \code{- (1|Nest)} to exclude the random effects because \code{drop1} can't handle them). However, due to the way that R handles formulas, dropping main effects from an interaction of *factors* has no effect on the overall model. (It would work if we were testing the interaction of continuous variables.)

\subsubsection{issues}

The \code{mixed} package implements a true ``type-3-like'' parameter-dropping mechanism for \code{[g]lmer} models. Something like that could in principle be applied here.

\subsection{Model selection and averaging with \tcode{MuMIn}}

We can run \code{MuMIn::dredge(owls_nb1)} on the model to fit all possible submodels.
Since this takes a little while (45 seconds or so), we've instead loaded some previously computed results:

% stored in vignette_data/model_evaluation.rda ...
<<dredge1>>=
print(owls_nb1_dredge)
@

<<plot_dredge1,fig.width=8,fig.height=8>>=
op <- par(mar=c(2,5,14,3))
plot(owls_nb1_dredge)
par(op) ## restore graphics parameters
@

Model averaging:

<<mumin_MA>>=
model.avg(owls_nb1_dredge)
@

\subsubsection{issues}

\begin{itemize}
\item may not work for Beta models because the \code{family} component (``beta") is not identical to the name of the family function (\code{beta_family()})? (Kamil BartoĊ„, pers. comm.)
\end{itemize}


\subsection{\tcode{multcomp} for multiple comparisons and \emph{post hoc} tests}

<<glht_use>>=
g1 <- glht(cbpp_b1, linfct = mcp(period = "Tukey"))
summary(g1)
@

\section{Extracting coefficients, coefficient plots and tables}

\subsection{\tcode{broom} and friends}

The \code{broom} and \code{broom.mixed} packages are designed to extract information from a broad range of models in a convenient (tidy) format; the dotwhisker package builds on this platform to draw elegant coefficient plots.

<<broom_mixed,fig.height=3,fig.width=5>>=
if (requireNamespace("broom.mixed") && requireNamespace("dotwhisker")) {
  t1 <- broom.mixed::tidy(owls_nb1, conf.int = TRUE)
  t1 <- transform(t1,
                  term=sprintf("%s.%s", component, term))

  if (packageVersion("dotwhisker")>"0.4.1") {
    dw <- dwplot(t1)
  } else {
    owls_nb1$coefficients <- TRUE  ## hack!
    dw <- dwplot(owls_nb1,by_2sd=FALSE)
  }
  print(dw+geom_vline(xintercept=0,lty=2))
}
@


\subsubsection{issues}

(these are more general \code{dwplot} issues)


\begin{itemize}
\item use black rather than color(1) when there's only a single model, i.e. only add aes(colour=model) conditionally?
- draw points even if std err / confint are NA (draw \code{geom_point()} as well as \code{geom_pointrange()}? need to apply all aesthetics, dodging, etc. to both ...)
\item for glmmTMB models, allow labeling by component? or should this be done by manipulating the tidied frame first? (i.e.: \verb+tidy(.) \%>\% tidyr::unite(term,c(component,term))+)
\end{itemize}

\subsection{coefficient tables with \tcode{xtable}}

The \code{xtable} package can output data frames as \LaTeX\ tables;
this isn't quite as elegant as \code{stargazer} etc., but is not a bad
start. I've sprinkled lots of hard line-breaks, spaces, and newlines in below: someone who was better at \TeX\ could certainly do a better job. (\code{xtable} can also produce HTML output.)

<<xtable_prep>>=
ss <- summary(owls_nb1)
## print table; add space, 
pxt <- function(x,title) {
  cat(sprintf("{\n\n\\textbf{%s}\n\\ \\\\\\vspace{2pt}\\ \\\\\n",title))
  print(xtable(x), floating=FALSE); cat("\n\n")
  cat("\\ \\\\\\vspace{5pt}\\ \\\\\n")
}

<<xtable_sum,eval=FALSE>>=
pxt(lme4::formatVC(ss$varcor$cond),"random effects variances")
pxt(coef(ss)$cond,"conditional fixed effects")
pxt(coef(ss)$zi,"conditional zero-inflation effects")
@

<<xtable_sum_real,results="asis",echo=FALSE>>=
if (requireNamespace("xtable")) {
  pxt(lme4::formatVC(ss$varcor$cond),"random effects variances")
  pxt(coef(ss)$cond,"conditional fixed effects")
  pxt(coef(ss)$zi,"conditional zero-inflation effects")
}
@

\subsection{coefficient tables with \tcode{texreg}}

For now, to avoid needing to import the \tcode{texreg} package,
we are providing the required \tcode{extract.glmmTMB} in a separate
R file that you can import with \tcode{source()}, as follows:

<<texreg1,results="asis">>=
source(system.file("other_methods","extract.R",package="glmmTMB"))
texreg(owls_nb1,caption="Owls model", label="tab:owls")
@

See output in Table~\ref{tab:owls}.

\subsection{coefficient tables with \tcode{huxtable}}

The \code{huxtable} package allows output in either \LaTeX\ or HTML: this example is tuned for \LaTeX.


<<huxtable,results="asis">>=
if (!huxtable_OK) {
  cat("Sorry, huxtable+LaTeX is unreliable on this platform; skipping\n")
} else {
  cc <- c("intercept (mean)"="(Intercept)",
          "food treatment (starvation)"="FoodTreatment1",
          "parental sex (M)"="SexParent1",
          "food $\\times$ sex"="FoodTreatment1:SexParent1")
  h0 <- huxreg(" " = owls_nb1, # give model blank name so we don't get '(1)'
               tidy_args = list(effects="fixed"),
               coefs = cc,
               error_pos = "right",
               statistics = "nobs" # don't include logLik and AIC
               )
  names(h0)[2:3] <- c("estimate", "std. err.")
  ## allow use of math notation in name
  h1 <- set_cell_properties(h0,row=5,col=1,escape_contents=FALSE)
  cat(to_latex(h1,tabular_only=TRUE))
}
@    


\subsubsection{issues}

\begin{itemize}
  \item \code{huxtable} needs quite a few additional \LaTeX\ packages: use \code{report_latex_dependencies()} to see what they are.
\end{itemize}

\section{influence measures}

\emph{Influence measures} quantify the effects of particular observations, or groups of observations, on the results of a statistical model; \emph{leverage} and \emph{Cook's distance} are the two most common formats for influence measures. If a \href{https://en.wikipedia.org/wiki/Projection_matrix}{projection matrix} (or ``hat matrix'') is available, influence measures can be computed efficiently; otherwise, the same quantities can be estimated by brute-force methods, refitting the model with each group or observation successively left out.

We've adapted the \tcode{car::influence.merMod} function to handle \tcode{glmmTMB} models; because it uses brute force, it can be slow, especially if evaluating the influence of individual observations.  For now, it is included as a separate source file rather than exported as a method (see below), although it may be included in the package (or incorporated in the \tcode{car} package) in the future.

<<load_infl>>=
source(system.file("other_methods","influence_mixed.R", package="glmmTMB"))
@ 


<<infl, eval=FALSE>>=
owls_nb1_influence_time <- system.time(
  owls_nb1_influence <- influence_mixed(owls_nb1, groups="Nest")
)
@

Re-fitting the model with each of the \Sexpr{length(unique(Owls$Nest))} nests excluded takes \Sexpr{round(owls_nb1_influence_time[["elapsed"]])} seconds (on an old Macbook Pro). The \tcode{car::infIndexPlot()} function is one way of displaying the results:

<<plot_infl>>=
car::infIndexPlot(owls_nb1_influence)
@ 

Or, you can transform the results and plot them however you like:

<<plot_infl2,fig.width=10,fig.height=6,out.width="\\textwidth">>=
inf <- as.data.frame(owls_nb1_influence[["fixed.effects[-Nest]"]])
inf <- transform(inf,
                 nest=rownames(inf),
                 cooks=cooks.distance(owls_nb1_influence))
inf$ord <- rank(inf$cooks)
if (require(reshape2)) {
  inf_long <- melt(inf, id.vars=c("ord","nest"))
  gg_infl <- (ggplot(inf_long,aes(ord,value))
    + geom_point()
    + facet_wrap(~variable, scale="free_y")
    ## n.b. may need expand_scale() in older ggplot versions ?
    + scale_x_reverse(expand=expansion(mult=0.15))
    + scale_y_continuous(expand=expansion(mult=0.15))
    + geom_text(data=subset(inf_long,ord>24),
                aes(label=nest),vjust=-1.05)
  )
  print(gg_infl)
}
@ 


\section{to do}

\begin{itemize}
\item more plotting methods (\code{sjplot})
\item output with \code{memisc}
\item AUC etc. with \code{ModelMetrics}
\end{itemize}

<<save_out,echo=FALSE>>=
## store time-consuming stuff
save("owls_nb1",
     "owls_nb1_simres",
     "owls_nb1_dredge",
     "owls_nb1_influence",
     "owls_nb1_influence_time",
     file="../inst/vignette_data/model_evaluation.rda",
     version=2 ## for compatibility with R < 3.6.0
     )
@
\end{document}