File: Methods.sysGmm.R

package info (click to toggle)
r-cran-gmm 1.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,592 kB
  • sloc: fortran: 131; ansic: 25; makefile: 2
file content (138 lines) | stat: -rw-r--r-- 4,582 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#  This program is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  A copy of the GNU General Public License is available at
#  http://www.r-project.org/Licenses/

summary.sysGmm <- function(object, ...)
    {
	z <- object
	se <- sqrt(diag(z$vcov))
        k <- attr(z$dat, "k")
        if (attr(z$dat, "sysInfo")$commonCoef)
            {
                seList <- rep(list(se), length(z$dat))
            } else {
                seList <- list()
                for (i in 1:length(z$dat))
                    {
                        seList[[i]] <- se[1:k[[i]]]
                        se <- se[-(1:k[[i]])]
                    }
            }
	par <- z$coefficients
	tval <- lapply(1:length(z$dat), function(i) par[[i]]/seList[[i]])
	ans <- list(met=z$met,kernel=z$kernel,algo=z$algo,call=z$call)
	names(ans$met) <- "GMM method"
	names(ans$kernel) <- "kernel for cov matrix"
        
	ans$coefficients <- lapply(1:length(z$dat), function(i) cbind(par[[i]],seList[[i]], tval[[i]], 2 * pnorm(abs(tval[[i]]), lower.tail = FALSE)))
        ans$stest <- specTest(z)
        ans$algoInfo <- z$algoInfo
        ans$initTheta <- object$initTheta

        for (i in 1:length(z$dat))
            {
            dimnames(ans$coefficients[[i]]) <- list(names(z$coefficients[[i]]), 
                                                    c("Estimate", "Std. Error", "t value", "Pr(>|t|)"))
            names(ans$initTheta[[i]]) <- names(z$coefficients[[i]])
        }
        ans$specMod <- object$specMod
	ans$bw <- attr(object$w0,"Spec")$bw
	ans$weights <- attr(object$w0,"Spec")$weights
        ans$Sysnames <- names(z$dat)
        ans$met <- attr(object$dat, "sysInfo")$typeDesc
	if(object$infVcov != "HAC")
            ans$kernel <- NULL
	class(ans) <- "summary.sysGmm"
	ans
    }

print.summary.sysGmm <- function(x, digits = 5, ...)
    {
	cat("\nCall:\n")
	cat(paste(deparse(x$call), sep="\n", collapse = "\n"), "\n\n", sep="")
        cat("Method\n", x$met,"\n\n")
        cat("\n")
	if( !is.null(x$kernel))
            {
		cat("Kernel: ", x$kernel)
		if (!is.null(x$bw))
                    cat("(with bw = ", round(x$bw,5),")\n\n")
		else
                    cat("\n\n")	
            }
	cat("Coefficients:\n")
        m <- length(x$coefficients)
        for (i in 1:m)
            {
                cat(x$Sysnames[i], "\n")
                cat("#########\n")
                #print.default(format(x$coefficients[[i]], digits=digits),
                #              print.gap = 2, quote = FALSE)
                printCoefmat(x$coefficients[[i]], digits=digits, ...)
                cat("\n")
            }
	cat(x$stest$ntest,"\n")
	print.default(format(x$stest$test, digits=digits),
                      print.gap = 2, quote = FALSE)
	cat("\n")
	if(!is.null(x$initTheta))
            {
		cat("Initial values of the coefficients\n")
                for (i in 1:m)
                    {
                        cat(x$Sysnames[i], "\n")
                        print(x$initTheta[[i]])
                    }
		cat("\n")
            }
        cat(x$specMod)
	if(!is.null(x$algoInfo))
            {	
		cat("#############\n")
 		cat("Information related to the numerical optimization\n")
            }
	if(!is.null(x$algoInfo$convergence))
            cat("Convergence code = ", x$algoInfo$convergence,"\n")
	if(!is.null(x$algoInfo$counts))
            {	
		cat("Function eval. = ",x$algoInfo$counts[1],"\n")
		cat("Gradian eval. = ",x$algoInfo$counts[2],"\n")
            }	
	if(!is.null(x$algoInfo$message))
            cat("Message: ",x$algoInfo$message,"\n")
	invisible(x)
    }

print.sysGmm <- function(x, digits=5, ...)
    {
	cat("Method\n", attr(x$dat, "sysInfo")$typeDesc,"\n\n")
	cat("Objective function value: ",x$objective,"\n\n")
        for (i in 1:length(x$coefficients))
            {
                cat(names(x$dat)[[i]], ": \n")
                print.default(format(coef(x)[[i]], digits=digits),
                              print.gap = 2, quote = FALSE)
            }
	cat("\n")
	if(!is.null(x$algoInfo$convergence))
            cat("Convergence code = ", x$algoInfo$convergence,"\n")
	cat(x$specMod)
	invisible(x)
    }