File: getModel.R

package info (click to toggle)
r-cran-gmm 1.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,592 kB
  • sloc: fortran: 131; ansic: 25; makefile: 2
file content (559 lines) | stat: -rw-r--r-- 27,182 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
#  This program is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  A copy of the GNU General Public License is available at
#  http://www.r-project.org/Licenses/

getModel <- function(object, ...)
    {
        UseMethod("getModel")
    }

getModel.tsls <- function(object, ...)
    {
        obj <- getModel.baseGmm(object, ...)        
        return(obj)
    }

getModel.sysGmm <- function(object, ...)
    {
        if (object$commonCoef & !is.null(object$crossEquConst))
            {
                object$commonCoef <- FALSE
                warning("When crossEquConst is not NULL, commonCoef=TRUE is ignore and set to FALSE")
            }
        object$allArg <- c(object, ...)
        object$formula <- list(g=object$g, h=object$h)
        if (!is.list(object$g))
            stop("g must be list of formulas")
        if (length(object$g) == 1)
            stop("For single equation GMM, use the function gmm()")
        if (!all(sapply(1:length(object$g), function(i) is(object$g[[i]], "formula"))))
            stop("g must be a list of formulas")
        if (!is.list(object$h))
            {
                if(!is(object$h, "formula"))
                    stop("h is either a list of formulas or a formula")
                else
                    object$h <- list(object$h)
            } else {
                if (!all(sapply(1:length(object$h), function(i) is(object$h[[i]], "formula"))))
                    stop("h is either a list of formulas or a formula")
            }
        if (length(object$h) == 1)
            {
                object$h <- rep(object$h, length(object$g))
                typeDesc <- "System Gmm with common instruments"
                typeInst <- "Common"
            } else {
                if (length(object$h) != length(object$g))
                    stop("The number of formulas in h should be the same as the number of formulas in g, \nunless the instruments are the same in each equation, \nin which case the number of equations in h should be 1")                    
                typeDesc <- "System Gmm"
                typeInst <- "nonCommon"
            }
        if (object$commonCoef)
            typeDesc <- paste(typeDesc, " (Common Coefficients)")
        dat <- lapply(1:length(object$g), function(i) try(getDat(object$g[[i]], object$h[[i]], data = object$data,
                                                                 error=!object$commonCoef), silent=TRUE))
        chk <- sapply(1:length(dat), function(i) any(class(dat[[i]]) == "try-error"))
        chk <- which(chk)
        mess <- vector()
        for (i in chk)
            {
                mess <- paste(mess, "\nSystem of equations:", i, "\n###############\n", sep="")
                mess <- paste(mess, attr(dat[[i]], "condition")[[1]])
            }
        if (length(chk)>0)
            stop(mess)
        if (is.null(names(object$g)))
            names(dat) <- paste("System_", 1:length(dat), sep="")
        else
            names(dat) <- names(object$g)        
        object$gradv <- .DmomentFct_Sys
        object$formula <- list(g=object$g, h=object$h)
        if (!all(sapply(1:length(dat), function(i) dat[[i]]$ny == 1)))
            stop("The number of dependent variable must be one in every equation")
        
        clname <- "sysGmm.twoStep.formula"
        object$x <- dat
        namex <- lapply(1:length(dat), function(i) colnames(dat[[i]]$x[,2:(1+dat[[i]]$k), drop=FALSE]))
        nameh <- lapply(1:length(dat), function(i) colnames(dat[[i]]$x[,(2+dat[[i]]$k):(1+dat[[i]]$k+dat[[i]]$nh), drop=FALSE]))            
        namey <- lapply(1:length(dat), function(i) colnames(dat[[i]]$x[,1, drop=FALSE]))
        object$namesCoef <- namex
        namesgt <- lapply(1:length(dat), function(i) paste(namey[[i]], "_", nameh[[i]], sep=""))
        object$namesgt <- namesgt
        object$namesy <- namey
        attr(object$x,"ModelType") <- "linear"
       #for (i in 1:length(object$x))
        #    attr(object$x[[i]], c("linear")) <- attr(object$x, "modelType")
        attr(object$x, "k") <- lapply(1:length(dat), function(i) length(object$namesCoef[[i]]))
        attr(object$x, "q") <- lapply(1:length(dat), function(i) length(object$namesgt[[i]]))
        attr(object$x, "n") <- lapply(1:length(dat), function(i) nrow(object$x[[i]]$x))
        object$TypeGmm <- class(object)
        attr(object$x, "weight") <- list(w=object$weightsMatrix,
                                         centeredVcov=object$centeredVcov)
        attr(object$x, "weight")$WSpec <- list()
        attr(object$x, "weight")$WSpec$sandwich <- list(kernel = object$kernel, bw = object$bw,
                                                        prewhite = object$prewhite,
                                                        ar.method = object$ar.method,
                                                        approx = object$approx, tol = object$tol)
        attr(object$x, "weight")$vcov <- object$vcov
        k <- lapply(1:length(dat), function(i) dat[[i]]$k)
        q <- lapply(1:length(dat), function(i) dat[[i]]$nh)
        df <- lapply(1:length(dat), function(i) dat[[i]]$nh-dat[[i]]$k)
        k2 <- do.call(c,k)
        if (object$commonCoef | !is.null(object$crossEquConst))
            {
                if (!all(k2==k2[1]))
                    stop("In a common coefficient model the number of regressors is the same in each equation")
                if (object$commonCoef)
                    totK <- k2[1]
                else
                    totK <- length(dat)*(k2[1]-length(object$crossEquConst)) + length(object$crossEquConst)
                if (sum(do.call(c,q))<totK)
                    stop("The number of moment conditions is less than the number of coefficients")
                if (!is.null(object$crossEquConst))
                    {
                        object$crossEquConst <- sort(object$crossEquConst)
                        if (length(object$crossEquConst) == k2[1])
                            if (all(object$crossEquConst==(1:k2[1])))
                                {
                                    object$crossEquConst <- NULL
                                    object$commonCoef <- TRUE
                                }
                    }
            }
        attr(object$x, "sysInfo") <- list(k=k, df=df, q=q, typeInst=typeInst, typeDesc=typeDesc, commonCoef=object$commonCoef,
                                          crossEquConst=object$crossEquConst)
        object$g <- .momentFct_Sys
        class(object)  <- clname
        return(object)
    }


getModel.constGmm <- function(object, ...)
    {
        class(object) <- "baseGmm"
        obj <- getModel(object)
        if (!is.null(object$t0))
            {
                if (!is.null(dim(object$eqConst)))
                    stop("When t0 is provided, eqConst must be a vector which indicates which parameters to fix")
                if (length(object$eqConst)>=length(object$t0))
                    stop("Too many constraints; use evalGmm() if all coefficients are fixed")
                if (is.character(object$eqConst))
                    {
                        if (is.null(names(object$t0)))
                            stop("t0 must be a named vector if you want eqConst to be names")
                        if (any(!(object$eqConst %in% names(object$t0))))
                            stop("Wrong coefficient names in eqConst")
                        object$eqConst <- sort(match(object$eqConst,names(object$t0)))
                    }
                restTet <- object$t0[object$eqConst]
                obj$t0 <- object$t0[-object$eqConst]
                object$eqConst <- cbind(object$eqConst,restTet)
            }  else {
                if (is.null(dim(object$eqConst)))
                    stop("When t0 is not provided, eqConst must be a 2xq matrix")
            }
        attr(obj$x, "eqConst") <- list(eqConst = object$eqConst)
        rownames(attr(obj$x, "eqConst")$eqConst) <- obj$namesCoef[object$eqConst[,1]]
        object$eqConst <- attr(obj$x, "eqConst")$eqConst
        if(is(object$g, "formula"))
            {
                if (obj$x$ny>1)
                    stop("Constrained GMM not implemented yet for system of equations")
                if (obj$x$k<=0)
                    stop("Nothing to estimate")
            }
        obj$eqConst <- object$eqConst
        attr(obj$x, "k") <- attr(obj$x, "k")-nrow(object$eqConst)
        obj$namesCoef <- obj$namesCoef[-object$eqConst[,1]]
        obj$type <- paste(obj$type,"(with equality constraints)",sep=" ")	
        mess <- paste(rownames(object$eqConst), " = " , object$eqConst[,2], "\n",collapse="")
        mess <- paste("#### Equality constraints ####\n",mess,"##############################\n\n",sep="")
        obj$specMod <- mess
        return(obj)
    }

getModel.baseGmm <- function(object, ...)
    {
        object$allArg <- c(object, list(...))        
        if(is(object$g, "formula"))
            {
                object$gradv <- .DmomentFct
                object$gradvf <- FALSE
                dat <- getDat(object$g, object$x, data = object$data)
                if(is.null(object$weightsMatrix))
                    {
                        clname <- paste(class(object), ".", object$type, ".formula", sep = "")
                    } else {    
                        clname <- "fixedW.formula"
                        object$type <- "One step GMM with fixed W"
                    }
                object$x <- dat
                object$gform<-object$g
                namex <- colnames(dat$x[,(dat$ny+1):(dat$ny+dat$k), drop=FALSE])
                nameh <- colnames(dat$x[,(dat$ny+dat$k+1):(dat$ny+dat$k+dat$nh), drop=FALSE]) 
                if (dat$ny > 1)
                    {
                        namey <- colnames(dat$x[,1:dat$ny, drop=FALSE])
                        object$namesCoef <- paste(rep(namey, dat$k), "_",
                                                  rep(namex, rep(dat$ny, dat$k)), sep = "")
                        object$namesgt <- paste(rep(namey, dat$nh), "_",
                                                rep(nameh, rep(dat$ny, dat$nh)), sep = "")
                    } else {
                        object$namesCoef <- namex
                        object$namesgt <- nameh
                    }
                attr(object$x,"ModelType") <- "linear"
                attr(object$x, "k") <- object$x$k
                attr(object$x, "q") <- object$x$ny*object$x$nh
                attr(object$x, "n") <- NROW(object$x$x)
                attr(object$x, "namesgt") <- object$namesgt
            } else {
                attr(object$x,"ModelType") <- "nonlinear"
                attr(object$x, "momentfct") <- object$g
                if (object$optfct == "optimize")
                    attr(object$x, "k") <- 1
                else
                    attr(object$x, "k") <- length(object$t0)
                attr(object$x, "q") <- NCOL(gt <- object$g(object$t0, object$x))
                attr(object$x, "n") <- NROW(gt)
                if (object$optfct == "optimize")
                    {
                        object$namesCoef <- "Theta1"
                    } else {
                        if(is.null(names(object$t0)))
                            object$namesCoef <- paste("Theta[" ,1:attr(object$x, "k"), "]", sep = "")
                        else
                            object$namesCoef <- names(object$t0)
                    }
                if(is.null(object$weightsMatrix))
                    {
                        clname <- paste(class(object), "." ,object$type, sep = "")
                    } else {
                        clname <- "fixedW"
                        object$type <- "One step GMM with fixed W"
                        attr(object$x, "weight")$w <- object$weightsMatrix
                    }
                if (!is.function(object$gradv))
                    { 
                        object$gradvf <- FALSE
                    } else {
                        attr(object$x, "gradv") <- object$gradv    
                        object$gradvf <- TRUE
                    }
                object$gradv <- .DmomentFct
            }   
        object$TypeGmm <- class(object)
        attr(object$x, "weight") <- list(w=object$weightsMatrix,
                                         centeredVcov=object$centeredVcov)
        attr(object$x, "weight")$WSpec <- list()
        attr(object$x, "weight")$WSpec$sandwich <- list(kernel = object$kernel, bw = object$bw,
                                                        prewhite = object$prewhite,
                                                        ar.method = object$ar.method,
                                                        approx = object$approx, tol = object$tol)
        attr(object$x, "weight")$vcov <- object$vcov
        attr(object$x, "mustar") <- object$mustar
        object$g <- .momentFct
        class(object)  <- clname
        return(object)
    }

getModel.constGel <- function(object, ...)
    {
        class(object) <- "baseGel"
        obj <- getModel(object)
        if (!is.null(dim(object$eqConst)))
            stop("eqConst must be a vector which indicates which parameters to fix")
	if (length(object$eqConst)>=length(object$tet0))
            stop("Too many constraints; use evalGel() if all coefficients are fixed")
        if (is.character(object$eqConst))
            {
		if (is.null(names(object$tet0)))
                    stop("tet0 must be a named vector if you want eqConst to be names")
		if (any(!(object$eqConst %in% names(object$tet0))))
                    stop("Wrong coefficient names in eqConst")
		object$eqConst <- sort(match(object$eqConst,names(object$tet0)))
            }
	restTet <- object$tet0[object$eqConst]
	obj$tet0 <- object$tet0[-object$eqConst]
	object$eqConst <- cbind(object$eqConst,restTet)    
        attr(obj$x, "eqConst") <- list(eqConst = object$eqConst)
        rownames(attr(obj$x, "eqConst")$eqConst) <- obj$namesCoef[object$eqConst[,1]]
        object$eqConst <- attr(obj$x, "eqConst")$eqConst
        if(is(object$g, "formula"))
            {
                if (obj$x$ny>1)
                    stop("Constrained GMM not implemented yet for system of equations")
            }
        obj$eqConst <- object$eqConst
        attr(obj$x, "k") <- attr(obj$x, "k")-nrow(object$eqConst)
        obj$namesCoef <- obj$namesCoef[-object$eqConst[,1]]
        obj$typeDesc <- paste(obj$typeDesc,"(with equality constraints)",sep=" ")	
        mess <- paste(rownames(object$eqConst), " = " , object$eqConst[,2], "\n",collapse="")
        mess <- paste("#### Equality constraints ####\n",mess,"##############################\n\n",sep="")
        obj$specMod <- mess
        return(obj)
    }

getModel.baseGel <- function(object, ...)
    {
        object$allArg <- c(object, list(...))
        object$allArg$weights <- NULL
        object$allArg$call <- NULL
        if(is(object$g, "formula"))
            {
                dat <- getDat(object$g, object$x, data = object$data)
                k <- dat$k            
                if (is.null(object$tet0))
                    {
                        if (!is.null(object$eqConst))
                            stop("You have to provide tet0 with equality constrains")
                        if (object$optfct == "optimize")
                            stop("For optimize, you must provide the 2x1 vector tet0")
                        res0 <- gmm(object$g, object$x, data=object$data)
                        object$tet0 <- res0$coefficients
                        if (object$smooth)
                            gt <- res0$gt
                    } else {
                        if (object$optfct == "optimize")
                            {
                                if (k != 1)
                                    stop("optimize() is for univariate optimization")
                                if (length(object$tet0) != 2)
                                    stop("For optimize(), tet0 must be a 2x1 vector")
                            } else {
                                if (k != length(object$tet0))
                                    stop("The number of starting values does not correspond to the number of regressors")
                            }                
                        if (object$smooth)
                            gt <- gmm(object$g, object$x, data=object$data)$gt
                    }                
                clname <- paste(class(object), ".modFormula", sep = "")
                object$gradv <- .DmomentFct
                object$gradvf <- FALSE
                object$x <- dat
                object$gform<-object$g
                namex <- colnames(dat$x[,(dat$ny+1):(dat$ny+dat$k), drop=FALSE])
                nameh <- colnames(dat$x[,(dat$ny+dat$k+1):(dat$ny+dat$k+dat$nh), drop=FALSE])
                if (dat$ny > 1)
                    {
                        namey <- colnames(dat$x[,1:dat$ny])
                        namesCoef <- paste(rep(namey, dat$k), "_", rep(namex, rep(dat$ny, dat$k)), sep = "")
                        object$namesgt <- paste(rep(namey, dat$nh), "_", rep(nameh, rep(dat$ny, dat$nh)), sep = "")
                    } else {
                        namesCoef <- namex
                        object$namesgt <- nameh
                    }
                if (is.null(names(object$tet0)))
                    object$namesCoef <- namesCoef
                else
                    object$namesCoef <- names(object$tet0)
                attr(object$x,"ModelType") <- "linear"
                attr(object$x, "k") <- k
                attr(object$x, "q") <- object$x$ny*object$x$nh
                
                attr(object$x, "n") <- NROW(object$x$x)
            } else {
                if (is.null(object$tet0))
                    stop("You must provide the starting values tet0 for nonlinear moments")
                if(any(object$optfct == c("optim", "nlminb")))
                    k <- length(object$tet0)
                else
                    k <- 1                    
                attr(object$x,"ModelType") <- "nonlinear"
                attr(object$x, "momentfct") <- object$g
                attr(object$x, "k") <- k
                attr(object$x, "q") <- NCOL(gt <- object$g(object$tet0, object$x))
                attr(object$x, "n") <- NROW(gt)
                if(is.null(names(object$tet0)))
                    object$namesCoef <- paste("Theta[" ,1:attr(object$x, "k"), "]", sep = "")
                else
                    object$namesCoef <- names(object$tet0)
                if (!is.function(object$gradv) | object$smooth)
                    { 
                        object$gradvf <- FALSE
                    } else {
                        attr(object$x, "gradv") <- object$gradv    
                        object$gradvf <- TRUE                            
                    }
                object$gradv <- .DmomentFct
                if (object$smooth)
                    gt <- gmm(object$g, object$x, object$tet0, wmatrix = "ident", ...)$gt
                clname <- paste(class(object), ".mod", sep = "")
            }
        if (object$smooth)
            {
                if (is.function(object$gradv))
                    warning("The provided gradv is not used when smooth=TRUE",
                            call. = FALSE)		
                if(object$kernel == "Truncated")
                    {
                        object$wkernel <- "Bartlett"
                        object$k1 <- 2
                        object$k2 <- 2
                    }
                if(object$kernel == "Bartlett")
                    {
                        object$wkernel <- "Parzen"
                        object$k1 <- 1
                        object$k2 <- 2/3
                    }
                gt <- scale(gt, scale=FALSE)
                class(gt) <- "gmmFct"
                if (is.function(object$bw))
                    object$bwVal <- object$bw(gt, kernel = object$wkernel, prewhite = object$prewhite, 
                                              ar.method = object$ar.method, approx = object$approx)
                else
                    object$bwVal <- object$bw
                object$w <- smoothG(gt, bw = object$bwVal, kernel = object$kernel, tol = object$tol_weights)$kern_weights
                attr(object$x,"smooth") <- list(bw=object$bwVal, w=object$w, kernel=object$kernel)
            } else {
                object$k1 <- 1
                object$k2 <- 1
                object$w <- kernel(1)
                object$bwVal <- 1
            }
        object$g <- .momentFct
        object$CGEL <- object$alpha
        object$typeDesc <- object$type
        class(object) <- clname
        return(object)
    }

getModel.ateGel <- function(object, ...)
    {
        object$allArg <- c(object, list(...))
        object$allArg$weights <- NULL
        object$allArg$call <- NULL
        if(is(object$g, "formula"))
            {
                dat <- getDat(object$g, object$x, data = object$data)
                if (!is.null(object$w))
                    if (is(object$w, "formula"))
                        {
                            dat$w <- model.matrix(object$w, object$data)[,-1,drop=FALSE]
                        } else {
                            stop("w must be a formula")
                        }                
                if (dat$ny>1 | dat$ny==0)
                    stop("You need one and only one dependent variable")
                k <- dat$k
                if (k>2 & object$momType=="ATT")
                    stop("Cannot compute ATT with multiple treatments")
                if (attr(dat$mt, "intercept")!=1)
                    stop("An intercept is needed to compute the treatment effect")
                if (!all(dat$x[,3:(k+1)] %in% c(0,1)))
                    stop("The treatment indicators can only take values 0 or 1")
                if (colnames(dat$x)[k+2] == "(Intercept)")
                    {
                        dat$x <- dat$x[,-(k+2)]
                        dat$nh <- dat$nh-1
                    }
                if (!is.null(object$popMom))
                    {
                        if (length(object$popMom)!=dat$nh)
                            stop("The dim. of the population moments does not match the dim. of the vector of covariates")                                 
                    }
                if (is.null(object$tet0))
                    {
                        if (is.null(dat$w))
                            {
                                tet0 <- lm(dat$x[,1]~dat$x[,3:(k+1)])$coef
                            } else {
                                tet0 <- lm(dat$x[,1]~dat$x[,3:(k+1)]+dat$w)$coef
                            }
                        tet0 <- c(tet0, colMeans(dat$x[,3:(k+1),drop=FALSE]))
                        names(tet0) <- NULL
                        object$tet0 <- tet0
                    } else {
                        ntet0 <- 2*k-1 + ifelse(is.null(dat$w), 0, ncol(dat$w))
                        if (length(object$tet0) != ntet0)
                            stop("tet0 should have a length equal to 2x(number of treatments)+1+number of w's if any")
                    }
                if (object$family != "linear")
                    {
                        if (any(!(dat$x[,1]%in%c(0,1))))
                            stop("For logit or probit, Y can only take 0s and 1s")
                        family <- binomial(link=object$family)
                        if (object$family == "logit")
                            family$mu.eta2 <- function(x, family) family$mu.eta(x)*(1-2*family$linkinv(x))
                        else
                            family$mu.eta2 <- function(x, family) -x*family$mu.eta(x)
                        
                    } else {
                        family <- NULL
                    }
                q <- dat$nh + 2*k+1
                if (object$momType != "bal" | !is.null(object$popMom))
                    q  <- q+dat$nh
                if (!is.null(dat$w))
                    {
                        q <- q+ncol(dat$w)
                        namew <- colnames(dat$w)
                    } else {
                        namew <- NULL
                    }
                object$gradv <- .DmomentFctATE
                object$x <- dat
                object$gradvf <- FALSE
                object$gform<-object$g                
                namex <- colnames(dat$x[,2:(k+1)])
                nameh <- colnames(dat$x[,(k+2):ncol(dat$x), drop=FALSE])
                namesCoef <- c(namex, namew, paste("TreatProb", 1:(k-1), sep=""))
                namesgt <- paste(rep(paste("Treat", 1:(k-1), sep=""),
                                     rep(dat$nh, k-1)), "_", rep(nameh, k-1), sep="")
                object$namesgt <- c(namesCoef,namesgt)
                if (object$momType != "bal" | !is.null(object$popMom))
                    object$namesgt <- c(object$namesgt, paste("bal_", nameh, sep=""))
                if (is.null(names(object$tet0)))
                    object$namesCoef <- namesCoef
                else
                    object$namesCoef <- names(object$tet0)
                attr(object$x,"ModelType") <- "linear"
                attr(object$x, "k") <- k
                attr(object$x, "q") <- q
                attr(object$x, "n") <- nrow(dat$x)
                attr(object$x, "momType") <- object$momType
                attr(object$x, "popMom") <- object$popMom
                attr(object$x, "family") <- family
            } else {
                stop("Not implemented yet for nonlinear regression")
            }
        if (object$momType == "ATT")
            metname <- "ATT"
        else
            metname <- "ATE"
        if (!is.null(object$popMom))
            {
                metname2 <- " with balancing based on population moments"
            } else {
                if (object$momType == "balSample")
                    metname2 <- " with balancing based on the sample moments"
                else
                    metname2 <- " with unrestricted balancing"
            }
        metname3 <- paste("\nMethod: ", object$type, sep="")
        if (!is.null(family))
            metname3 <- paste(metname3, ", Family: Binomial with ", family$link, " link", sep="")
        clname <- "baseGel.mod"
        object$k1 <- 1
        object$k2 <- 1
        object$w <- kernel(1)
        object$bwVal <- 1
        object$g <- .momentFctATE
        object$CGEL <- object$alpha
        object$typeDesc <- paste(metname, metname2, metname3, sep="")
        class(object) <- clname
        return(object)
    }