File: fitted.Rd

package info (click to toggle)
r-cran-gmm 1.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,592 kB
  • sloc: fortran: 131; ansic: 25; makefile: 2
file content (58 lines) | stat: -rw-r--r-- 1,462 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
\name{fitted}
\alias{fitted.gel}
\alias{fitted.gmm}
\title{Fitted values of GEL and GMM}
\description{
 Method to extract the fitted values of the model estimated by \code{\link{gel}} or \code{\link{gmm}}.
}
\usage{
\method{fitted}{gel}(object, ...)
\method{fitted}{gmm}(object, ...)
}
\arguments{
 \item{object}{An object of class \code{gel} or \code{gel} returned by the function \code{\link{gel}} or  \code{\link{gmm}}}
\item{...}{Other arguments when \code{fitted} is applied to an other class object}
}

\value{
It returns a matrix of the estimated mean \eqn{\hat{y}} in \code{g=y~x} as it is done by \code{fitted.lm}.
}

\examples{

# GEL can deal with endogeneity problems

n = 200
phi<-c(.2,.7)
thet <- 0.2
sd <- .2
set.seed(123)
x <- matrix(arima.sim(n = n, list(order = c(2,0,1), ar = phi, ma = thet, sd = sd)), ncol = 1)

y <- x[7:n]
ym1 <- x[6:(n-1)]
ym2 <- x[5:(n-2)]
H <- cbind(x[4:(n-3)], x[3:(n-4)], x[2:(n-5)], x[1:(n-6)])
g <- y ~ ym1 + ym2
x <- H

res <- gel(g, x, c(0,.3,.6))
plot(y, main = "Fitted ARMA with GEL")
lines(fitted(res), col = 2)

# GMM is like GLS for linear models without endogeneity problems

set.seed(345)
n = 200
phi<-c(.2,.7)
thet <- 0
sd <- .2
x <- matrix(arima.sim(n = n, list(order = c(2,0,1), ar = phi, ma = thet, sd = sd)), ncol = 1)
y <- 10 + 5*rnorm(n) + x

res <- gmm(y ~ x, x)
plot(x, y, main = "Fitted model with GMM")
lines(x, fitted(res), col = 2)
legend("topright", c("Y","Yhat"), col = 1:2, lty = c(1,1))
}