File: README.md

package info (click to toggle)
r-cran-graphlayouts 1.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,660 kB
  • sloc: cpp: 696; sh: 13; makefile: 2
file content (334 lines) | stat: -rw-r--r-- 11,350 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

<!-- README.md is generated from README.Rmd. Please edit that file -->

# graphlayouts <img src="man/figures/logo.png" align="right"/>

[![R-CMD-check](https://github.com/schochastics/graphlayouts/workflows/R-CMD-check/badge.svg)](https://github.com/schochastics/graphlayouts/actions)
[![CRAN
status](https://www.r-pkg.org/badges/version/graphlayouts)](https://cran.r-project.org/package=graphlayouts)
[![Downloads](https://cranlogs.r-pkg.org/badges/graphlayouts)](https://CRAN.R-project.org/package=graphlayouts)
[![Total
Downloads](https://cranlogs.r-pkg.org/badges/grand-total/graphlayouts)](https://CRAN.R-project.org/package=graphlayouts)
[![Codecov test
coverage](https://codecov.io/gh/schochastics/graphlayouts/branch/main/graph/badge.svg)](https://app.codecov.io/gh/schochastics/graphlayouts?branch=main)
[![Zenodo](https://zenodo.org/badge/DOI/10.5281/zenodo.7870213.svg)](https://doi.org/10.5281/zenodo.7870213)
[![JOSS](https://joss.theoj.org/papers/10.21105/joss.05238/status.svg)](https://doi.org/10.21105/joss.05238)

This package implements some graph layout algorithms that are not
available in `igraph`.

**A detailed introductory tutorial for graphlayouts and ggraph can be
found [here](https://schochastics.github.io/netVizR/).**

The package implements the following algorithms:

- Stress majorization
  ([Paper](https://graphviz.gitlab.io/_pages/Documentation/GKN04.pdf))
- Quadrilateral backbone layout
  ([Paper](https://doi.org/10.7155/jgaa.00370))
- flexible radial layouts
  ([Paper](https://www.uni-konstanz.de/algo/publications/bp-mfrl-11.pdf))
- sparse stress ([Paper](https://arxiv.org/abs/1608.08909))
- pivot MDS ([Paper](https://doi.org/10.1007/978-3-540-70904-6_6))
- dynamic layout for longitudinal data
  ([Paper](https://doi.org/10.1016/j.socnet.2011.06.002))
- spectral layouts (adjacency/Laplacian)
- a simple multilevel layout
- a layout algorithm using UMAP
- group based centrality and focus layouts which keeps groups of nodes
  close in the same range on the concentric circle

## Install

``` r
# dev version
remotes::install_github("schochastics/graphlayouts")

# CRAN
install.packages("graphlayouts")
```

## Stress Majorization: Connected Network

*This example is a bit of a special case since it exploits some weird
issues in igraph.*

``` r
library(igraph)
library(ggraph)
library(graphlayouts)

set.seed(666)
pa <- sample_pa(1000, 1, 1, directed = F)

ggraph(pa, layout = "nicely") +
    geom_edge_link0(width = 0.2, colour = "grey") +
    geom_node_point(col = "black", size = 0.3) +
    theme_graph()
```

<img src="man/figures/README-example-1.png" width="80%" style="display: block; margin: auto;" />

``` r

ggraph(pa, layout = "stress") +
    geom_edge_link0(width = 0.2, colour = "grey") +
    geom_node_point(col = "black", size = 0.3) +
    theme_graph()
```

<img src="man/figures/README-example-2.png" width="80%" style="display: block; margin: auto;" />

## Stress Majorization: Unconnected Network

Stress majorization also works for networks with several components. It
relies on a bin packing algorithm to efficiently put the components in a
rectangle, rather than a circle.

``` r
set.seed(666)
g <- disjoint_union(
    sample_pa(10, directed = FALSE),
    sample_pa(20, directed = FALSE),
    sample_pa(30, directed = FALSE),
    sample_pa(40, directed = FALSE),
    sample_pa(50, directed = FALSE),
    sample_pa(60, directed = FALSE),
    sample_pa(80, directed = FALSE)
)

ggraph(g, layout = "nicely") +
    geom_edge_link0() +
    geom_node_point() +
    theme_graph()
```

<img src="man/figures/README-example_un-1.png" width="80%" style="display: block; margin: auto;" />

``` r

ggraph(g, layout = "stress", bbox = 40) +
    geom_edge_link0() +
    geom_node_point() +
    theme_graph()
```

<img src="man/figures/README-example_un-2.png" width="80%" style="display: block; margin: auto;" />

## Backbone Layout

Backbone layouts are helpful for drawing hairballs.

``` r
set.seed(665)
# create network with a group structure
g <- sample_islands(9, 40, 0.4, 15)
g <- simplify(g)
V(g)$grp <- as.character(rep(1:9, each = 40))

ggraph(g, layout = "stress") +
    geom_edge_link0(colour = rgb(0, 0, 0, 0.5), width = 0.1) +
    geom_node_point(aes(col = grp)) +
    scale_color_brewer(palette = "Set1") +
    theme_graph() +
    theme(legend.position = "none")
```

<img src="man/figures/README-hairball-1.png" width="80%" style="display: block; margin: auto;" />

The backbone layout helps to uncover potential group structures based on
edge embeddedness and puts more emphasis on this structure in the
layout.

``` r
bb <- layout_as_backbone(g, keep = 0.4)
E(g)$col <- FALSE
E(g)$col[bb$backbone] <- TRUE

ggraph(g, layout = "manual", x = bb$xy[, 1], y = bb$xy[, 2]) +
    geom_edge_link0(aes(col = col), width = 0.1) +
    geom_node_point(aes(col = grp)) +
    scale_color_brewer(palette = "Set1") +
    scale_edge_color_manual(values = c(rgb(0, 0, 0, 0.3), rgb(0, 0, 0, 1))) +
    theme_graph() +
    theme(legend.position = "none")
```

<img src="man/figures/README-backbone-1.png" width="80%" style="display: block; margin: auto;" />

## Radial Layout with Focal Node

The function `layout_with_focus()` creates a radial layout around a
focal node. All nodes with the same distance from the focal node are on
the same circle.

``` r
library(igraphdata)
library(patchwork)
data("karate")

p1 <- ggraph(karate, layout = "focus", focus = 1) +
    draw_circle(use = "focus", max.circle = 3) +
    geom_edge_link0(edge_color = "black", edge_width = 0.3) +
    geom_node_point(aes(fill = as.factor(Faction)), size = 2, shape = 21) +
    scale_fill_manual(values = c("#8B2323", "#EEAD0E")) +
    theme_graph() +
    theme(legend.position = "none") +
    coord_fixed() +
    labs(title = "Focus on Mr. Hi")

p2 <- ggraph(karate, layout = "focus", focus = 34) +
    draw_circle(use = "focus", max.circle = 4) +
    geom_edge_link0(edge_color = "black", edge_width = 0.3) +
    geom_node_point(aes(fill = as.factor(Faction)), size = 2, shape = 21) +
    scale_fill_manual(values = c("#8B2323", "#EEAD0E")) +
    theme_graph() +
    theme(legend.position = "none") +
    coord_fixed() +
    labs(title = "Focus on John A.")

p1 + p2
```

<img src="man/figures/README-flex_focus-1.png" width="80%" style="display: block; margin: auto;" />

## Radial Centrality Layout

The function `layout_with_centrality` creates a radial layout around the
node with the highest centrality value. The further outside a node is,
the more peripheral it is.

``` r
library(igraphdata)
library(patchwork)
data("karate")

bc <- betweenness(karate)
p1 <- ggraph(karate, layout = "centrality", centrality = bc, tseq = seq(0, 1, 0.15)) +
    draw_circle(use = "cent") +
    annotate_circle(bc, format = "", pos = "bottom") +
    geom_edge_link0(edge_color = "black", edge_width = 0.3) +
    geom_node_point(aes(fill = as.factor(Faction)), size = 2, shape = 21) +
    scale_fill_manual(values = c("#8B2323", "#EEAD0E")) +
    theme_graph() +
    theme(legend.position = "none") +
    coord_fixed() +
    labs(title = "betweenness centrality")


cc <- closeness(karate)
p2 <- ggraph(karate, layout = "centrality", centrality = cc, tseq = seq(0, 1, 0.2)) +
    draw_circle(use = "cent") +
    annotate_circle(cc, format = "scientific", pos = "bottom") +
    geom_edge_link0(edge_color = "black", edge_width = 0.3) +
    geom_node_point(aes(fill = as.factor(Faction)), size = 2, shape = 21) +
    scale_fill_manual(values = c("#8B2323", "#EEAD0E")) +
    theme_graph() +
    theme(legend.position = "none") +
    coord_fixed() +
    labs(title = "closeness centrality")

p1 + p2
```

<img src="man/figures/README-flex_cent-1.png" width="80%" style="display: block; margin: auto;" />

## Large graphs

`graphlayouts` implements two algorithms for visualizing large networks
(\<100k nodes). `layout_with_pmds()` is similar to `layout_with_mds()`
but performs the multidimensional scaling only with a small number of
pivot nodes. Usually, 50-100 are enough to obtain similar results to the
full MDS.

`layout_with_sparse_stress()` performs stress majorization only with a
small number of pivots (~50-100). The runtime performance is inferior to
pivotMDS but the quality is far superior.

A comparison of runtimes and layout quality can be found in the
[wiki](https://github.com/schochastics/graphlayouts/wiki/)  
**tl;dr**: both layout algorithms appear to be faster than the fastest
igraph algorithm `layout_with_drl()`.

Below are two examples of layouts generated for large graphs using
`layout_with_sparse_stress()`

<img src="man/figures/rt-net.png" width="80%" style="display: block; margin: auto;" />
A retweet network with 18k nodes and 61k edges

<img src="man/figures/squad_network2022_small.png" width="80%" style="display: block; margin: auto;" />
A network of football players with 165K nodes and 6M edges.

## dynamic layouts

`layout_as_dynamic()` allows you to visualize snapshots of longitudinal
network data. Nodes are anchored with a reference layout and only moved
slightly in each wave depending on deleted/added edges. In this way, it
is easy to track down specific nodes throughout time. Use `patchwork` to
put the individual plots next to each other.

``` r
# remotes::install_github("schochastics/networkdata")
library(networkdata)
# longitudinal dataset of friendships in a school class
data("s50")

xy <- layout_as_dynamic(s50, alpha = 0.2)
pList <- vector("list", length(s50))

for (i in seq_along(s50)) {
    pList[[i]] <- ggraph(s50[[i]], layout = "manual", x = xy[[i]][, 1], y = xy[[i]][, 2]) +
        geom_edge_link0(edge_width = 0.6, edge_colour = "grey66") +
        geom_node_point(shape = 21, aes(fill = as.factor(smoke)), size = 3) +
        geom_node_text(aes(label = 1:50), repel = T) +
        scale_fill_manual(
            values = c("forestgreen", "grey25", "firebrick"),
            labels = c("no", "occasional", "regular"),
            name = "smoking",
            guide = ifelse(i != 2, "none", "legend")
        ) +
        theme_graph() +
        theme(legend.position = "bottom") +
        labs(title = paste0("Wave ", i))
}
wrap_plots(pList)
```

<img src="man/figures/dynamic_ex.png" width="80%" style="display: block; margin: auto;" />

## Layout manipulation

The functions `layout_mirror()` and `layout_rotate()` can be used to
manipulate an existing layout

<img src="man/figures/layout_manipulation.png" width="80%" style="display: block; margin: auto;" />

# How to reach out?

### Where do I report bugs?

Simply [open an
issue](https://github.com/schochastics/graphlayouts/issues/new) on
GitHub.

### How do I contribute to the package?

If you have an idea (but no code yet), [open an
issue](https://github.com/schochastics/graphlayouts/issues/new) on
GitHub. If you want to contribute with a specific feature and have the
code ready, fork the repository, add your code, and create a pull
request.

### Do you need support?

The easiest way is to [open an
issue](https://github.com/schochastics/graphlayouts/issues/new) - this
way, your question is also visible to others who may face similar
problems.

### Code of Conduct

Please note that the graphlayouts project is released with a
[Contributor Code of
Conduct](https://contributor-covenant.org/version/2/1/CODE_OF_CONDUCT.html).
By contributing to this project, you agree to abide by its terms.