File: cdssden.R

package info (click to toggle)
r-cran-gss 2.1-3-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 1,740 kB
  • ctags: 1,400
  • sloc: fortran: 5,241; ansic: 1,388; makefile: 1
file content (169 lines) | stat: -rw-r--r-- 6,285 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
cdssden <- ## Evaluate conditional density
function (object,x,cond,int=NULL) {
    if (!("ssden"%in%class(object))) stop("gss error in cdssden: not a ssden object")
    if (nrow(cond)!=1) stop("gss error in cdssden: condition has to be a single point")
    xnames <- NULL
    for (i in colnames(object$mf))
        if (all(i!=colnames(cond))) xnames <- c(xnames,i)
    if (any(length(xnames)==c(0,ncol(object$mf))))
        stop("gss error in cdssden: not a conditional density")
    if (length(xnames)==1&is.vector(x)) {
        x <- data.frame(x)
        colnames(x) <- xnames
    }
    if (!all(sort(xnames)==sort(colnames(x))))
        stop("gss error in cdssden: mismatched variable names")
    ## Calculate normalizing constant
    while (is.null(int)) {
        fac.list <- NULL
        num.list <- NULL
        for (xlab in xnames) {
            if (is.factor(x.wk <- x[[xlab]])) fac.list <- c(fac.list,xlab)
            else {
                if (!is.vector(x.wk)|is.null(object$domain[[xlab]])) {
                    warning("gss warning in cdssden: int set to 1")
                    int <- 1
                    next
                }
                else num.list <- c(num.list,xlab)
            }
        }
        ## Generate quadrature for numerical variables
        if (!is.null(num.list)) {
            if (length(num.list)==1) {
                ## Gauss-Legendre quadrature
                mn <- min(object$domain[,num.list])
                mx <- max(object$domain[,num.list])
                quad <- gauss.quad(200,c(mn,mx))
                quad$pt <- data.frame(quad$pt)
                colnames(quad$pt) <- num.list
            }
            else {
                ## Smolyak cubature
                domain.wk <- object$domain[,num.list]
                code <- c(15,14,13)
                quad <- smolyak.quad(ncol(domain.wk),code[ncol(domain.wk)-1])
                for (i in 1:ncol(domain.wk)) {
                    xlab <- colnames(domain.wk)[i]
                    form <- as.formula(paste("~",xlab))
                    jk <- ssden(form,data=object$mf,domain=domain.wk[i],alpha=2,
                                id.basis=object$id.basis)
                    quad$pt[,i] <- qssden(jk,quad$pt[,i])
                    quad$wt <- quad$wt/dssden(jk,quad$pt[,i])
                }
                jk <- NULL
                quad$pt <- data.frame(quad$pt)
                colnames(quad$pt) <- colnames(domain.wk)
            }
        }
        else quad <- list(pt=data.frame(dum=1),wt=1)
        ## Incorporate factors in quadrature
        if (!is.null(fac.list)) {
            for (i in 1:length(fac.list)) {
                wk <- expand.grid(levels(object$mf[[fac.list[i]]]),1:length(quad$wt))
                quad$wt <- quad$wt[wk[,2]]
                col.names <- c(fac.list[i],colnames(quad$pt))
                quad$pt <- data.frame(wk[,1],quad$pt[wk[,2],])
                colnames(quad$pt) <- col.names
            }
        }
        xmesh <- quad$pt[,xnames,drop=FALSE]
        xx <- cond[rep(1,nrow(xmesh)),,drop=FALSE]
        int <- sum(dssden(object,cbind(xmesh,xx))*quad$wt)
    }
    ## Return value
    xx <- cond[rep(1,nrow(x)),,drop=FALSE]
    list(pdf=dssden(object,cbind(x,xx))/int,int=int)
}

cpssden <- ## Compute cdf for univariate conditional density
function(object,q,cond) {
    if (!("ssden"%in%class(object))) stop("gss error in cpssden: not a ssden object")
    xnames <- NULL
    for (i in colnames(object$mf))
        if (all(i!=colnames(cond))) xnames <- c(xnames,i)
    if ((length(xnames)!=1)|!is.vector(object$mf[,xnames]))
        stop("gss error in cpssden: not a 1-D conditional density")
    mn <- min(object$domain[,xnames])
    mx <- max(object$domain[,xnames])
    order.q <- rank(q)
    p <- q <- sort(q)
    q.dup <- duplicated(q)
    p[q<=mn] <- 0
    p[q>=mx] <- 1
    qd.hize <- 200
    qd <- gauss.quad(2*qd.hize,c(mn,mx))
    d.qd <- cdssden(object,qd$pt,cond)$pdf
    gap <- diff(qd$pt)
    g.wk <- gap[qd.hize]/2
    for (i in 1:(qd.hize-2)) g.wk <- c(g.wk,gap[qd.hize+i]-g.wk[i])
    g.wk <- 2*g.wk
    g.wk <- c(g.wk,(mx-mn)/2-sum(g.wk))
    gap[qd.hize:1] <- gap[qd.hize+(1:qd.hize)] <- g.wk
    brk <- cumsum(c(mn,gap))
    kk <- (1:length(q))[q>mn&q<mx]
    for (i in kk) {
        if (q.dup[i]) {
            p[i] <- p.dup
            next
        }
        ind <- (1:(2*qd.hize))[qd$pt<q[i]]
        if (!length(ind)) {
            wk <- d.qd[1]*qd$wt[1]*(q[i]-mn)/gap[1]
        }
        else {
            wk <- sum(d.qd[ind]*qd$wt[ind])
            id.mx <- max(ind)
            if (q[i]<brk[id.mx+1])
                wk <- wk-d.qd[id.mx]*qd$wt[id.mx]*(brk[id.mx+1]-q[i])/gap[id.mx]
            else wk <- wk+d.qd[id.mx+1]*qd$wt[id.mx+1]*(q[i]-brk[id.mx+1])/gap[id.mx+1]
        }
        p[i] <- p.dup <- wk
    }
    p[order.q]
}

cqssden <- ## Compute quantiles for univariate conditional density
function(object,p,cond) {
    if (!("ssden"%in%class(object))) stop("gss error in cqssden: not a ssden object")
    xnames <- NULL
    for (i in colnames(object$mf))
        if (all(i!=colnames(cond))) xnames <- c(xnames,i)
    if ((length(xnames)!=1)|!is.vector(object$mf[,xnames]))
        stop("gss error in cqssden: not a 1-D conditional density")
    mn <- min(object$domain[,xnames])
    mx <- max(object$domain[,xnames])
    order.p <- rank(p)
    q <- p <- sort(p)
    p.dup <- duplicated(p)
    q[p<=0] <- mn
    q[p>=1] <- mx
    qd.hize <- 200
    qd <- gauss.quad(2*qd.hize,c(mn,mx))
    d.qd <- cdssden(object,qd$pt,cond)$pdf
    gap <- diff(qd$pt)
    g.wk <- gap[qd.hize]/2
    for (i in 1:(qd.hize-2)) g.wk <- c(g.wk,gap[qd.hize+i]-g.wk[i])
    g.wk <- 2*g.wk
    g.wk <- c(g.wk,(mx-mn)/2-sum(g.wk))
    gap[qd.hize:1] <- gap[qd.hize+(1:qd.hize)] <- g.wk
    brk <- cumsum(c(mn,gap))
    p.wk <- cumsum(d.qd*qd$wt)
    kk <- (1:length(p))[p>0&p<1]
    for (i in kk) {
        if (p.dup[i]) {
            q[i] <- q.dup
            next
        }
        ind <- (1:(2*qd.hize))[p.wk<p[i]]
        if (!length(ind)) {
            wk <- mn+p[i]/(d.qd[1]*qd$wt[1])*gap[1]
        }
        else {
            id.mx <- max(ind)
            wk <- brk[id.mx+1]+(p[i]-p.wk[id.mx])/(d.qd[id.mx+1]*qd$wt[id.mx+1])*gap[id.mx+1]
        }
        q[i] <- q.dup <- wk
    }
    q[order.p]
}