1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
## Make RK for thin-plate splines
mkrk.tp <- function(dm,order,mesh,weight=1)
{
## Check inputs
if (!((2*order>dm)&(dm>=1))) {
stop("gss error: thin-plate spline undefined for the parameters")
}
if (xor(is.vector(mesh),dm==1)
|xor(is.matrix(mesh),dm>=2)) {
stop("gss error in mkrk.tp: mismatched inputs")
}
if ((min(weight)<0)|(max(weight)<=0)) {
stop("gss error in mkrk.tp: negative weights")
}
## Set weights
if (is.vector(mesh)) N <- length(mesh)
else N <- dim(mesh)[1]
weight <- rep(weight,len=N)
weight <- sqrt(weight/sum(weight))
## Obtain orthonormal basis
phi.p <- mkphi.tp.p(dm,order)
nnull <- choose(dm+order-1,dm)
s <- NULL
for (nu in 1:nnull) s <- cbind(s,phi.p$fun(mesh,nu,phi.p$env))
s <- qr(weight*s)
if (s$rank<nnull) {
stop("gss error in mkrk.tp: insufficient normalizing mesh for thin-plate spline")
}
q <- qr.Q(s)
r <- qr.R(s)
## Set Q^{T}E(|u_{i}-u_{j}|)Q
rk.p <- mkrk.tp.p(dm,order)
pep <- weight*t(weight*rk.p$fun(mesh,mesh,rk.p$env,out=TRUE))
pep <- t(q)%*%pep%*%q
## Create the environment
env <- list(dim=dm,order=order,weight=weight,
phi.p=phi.p,rk.p=rk.p,q=q,r=r,mesh=mesh,pep=pep)
## Create the rk function
fun <- function(x,y,env,outer.prod=FALSE) {
## Check inputs
if (env$dim==1) {
if (!(is.vector(x)&is.vector(y))) {
stop("gss error in rk: inputs are of wrong types")
}
nx <- length(x)
ny <- length(y)
}
else {
if (is.vector(x)) x <- t(as.matrix(x))
if (env$dim!=dim(x)[2]) {
stop("gss error in rk: inputs are of wrong dimensions")
}
nx <- dim(x)[1]
if (is.vector(y)) y <- t(as.matrix(y))
if (env$dim!=dim(y)[2]) {
stop("gss error in rk: inputs are of wrong dimensions")
}
ny <- dim(y)[1]
}
## Return the results
nnull <- choose(env$dim+env$order-1,env$dim)
if (outer.prod) {
phix <- phiy <- NULL
for (nu in 1:nnull) {
phix <- rbind(phix,env$phi.p$fun(x,nu,env$phi.p$env))
phiy <- rbind(phiy,env$phi.p$fun(y,nu,env$phi.p$env))
}
phix <- backsolve(env$r,phix,transpose=TRUE)
phiy <- backsolve(env$r,phiy,transpose=TRUE)
ex <- env$rk.p$fun(env$mesh,x,env$rk.p$env,out=TRUE)
ex <- env$weight*ex
ex <- t(env$q)%*%ex
ey <- env$rk.p$fun(env$mesh,y,env$rk.p$env,out=TRUE)
ey <- env$weight*ey
ey <- t(env$q)%*%ey
env$rk.p$fun(x,y,env$rk.p$env,out=TRUE)-t(phix)%*%ey-
t(ex)%*%phiy+t(phix)%*%env$pep%*%phiy
}
else {
N <- max(nx,ny)
phix <- phiy <- NULL
for (nu in 1:nnull) {
phix <- rbind(phix,env$phi.p$fun(x,nu,env$phi.p$env))
phiy <- rbind(phiy,env$phi.p$fun(y,nu,env$phi.p$env))
}
phix <- backsolve(env$r,phix,transpose=TRUE)
phix <- matrix(phix,nnull,N)
phiy <- backsolve(env$r,phiy,transpose=TRUE)
phiy <- matrix(phiy,nnull,N)
ex <- env$rk.p$fun(env$mesh,x,env$rk.p$env,out=TRUE)
ex <- env$weight*ex
ex <- t(env$q)%*%ex
ex <- matrix(ex,nnull,N)
ey <- env$rk.p$fun(env$mesh,y,env$rk.p$env,out=TRUE)
ey <- env$weight*ey
ey <- t(env$q)%*%ey
ey <- matrix(ey,nnull,N)
fn1 <- function(x,n) x[1:n]%*%x[n+(1:n)]
fn2 <- function(x,pep,n) t(x[1:n])%*%pep%*%x[n+(1:n)]
env$rk.p$fun(x,y,env$rk.p$env)-apply(rbind(phix,ey),2,fn1,nnull)-
apply(rbind(phiy,ex),2,fn1,nnull)+
apply(rbind(phix,phiy),2,fn2,env$pep,nnull)
}
}
## Return the function and the environment
list(fun=fun,env=env)
}
## Make phi function for thin-plate splines
mkphi.tp <- function(dm,order,mesh,weight)
{
## Check inputs
if (!((2*order>dm)&(dm>=1))) {
stop("gss error: thin-plate spline undefined for the parameters")
}
if (xor(is.vector(mesh),dm==1)
|xor(is.matrix(mesh),dm>=2)) {
stop("gss error in mkphi.tp: mismatched inputs")
}
if ((min(weight)<0)|(max(weight)<=0)) {
stop("gss error in mkphi.tp: negative weights")
}
## Set weights
if (is.vector(mesh)) N <- length(mesh)
else N <- dim(mesh)[1]
weight <- rep(weight,len=N)
weight <- sqrt(weight/sum(weight))
## Create the environment
phi.p <- mkphi.tp.p(dm,order)
nnull <- choose(dm+order-1,dm)
s <- NULL
for (nu in 1:nnull) s <- cbind(s,phi.p$fun(mesh,nu,phi.p$env))
s <- qr(weight*s)
if (s$rank<nnull) {
stop("gss error in mkphi: insufficient normalizing mesh for thin-plate spline")
}
r <- qr.R(s)
env <- list(dim=dm,order=order,phi.p=phi.p,r=r)
## Create the phi function
fun <- function(x,nu,env) {
nnull <- choose(env$dim+env$order-1,env$dim)
phix <- NULL
for(i in 1:nnull)
phix <- rbind(phix,env$phi.p$fun(x,i,env$phi.p$env))
t(backsolve(env$r,phix,transpose=TRUE))[,nu+1]
}
## Return the function and the environment
list(fun=fun,env=env)
}
## Make pseudo RK for thin-plate splines
mkrk.tp.p <- function(dm,order)
{
## Check inputs
if (!((2*order>dm)&(dm>=1))) {
stop("gss error: thin-plate spline undefined for the parameters")
}
## Create the environment
if (dm%%2) {
theta <- gamma(dm/2-order)/2^(2*order)/pi^(dm/2)/gamma(order)
}
else {
theta <- (-1)^(dm/2+order+1)/2^(2*order-1)/pi^(dm/2)/
gamma(order)/gamma(order-dm/2+1)
}
env <- list(dim=dm,order=order,theta=theta)
## Create the rk.p function
fun <- function(x,y,env,outer.prod=FALSE) {
## Check inputs
if (env$dim==1) {
if (!(is.vector(x)&is.vector(y))) {
stop("gss error in rk: inputs are of wrong types")
}
}
else {
if (is.vector(x)) x <- t(as.matrix(x))
if (env$dim!=dim(x)[2]) {
stop("gss error in rk: inputs are of wrong dimensions")
}
if (is.vector(y)) y <- t(as.matrix(y))
if (env$dim!=dim(y)[2]) {
stop("gss error in rk: inputs are of wrong dimensions")
}
}
## Return the results
if (outer.prod) {
if (env$dim==1) {
fn1 <- function(x,y) abs(x-y)
d <- outer(x,y,fn1)
}
else {
fn2 <- function(x,y) sqrt(sum((x-y)^2))
d <- NULL
for (i in 1:dim(y)[1]) d <- cbind(d,apply(x,1,fn2,y[i,]))
}
}
else {
if (env$dim==1) d <- abs(x-y)
else {
N <- max(dim(x)[1],dim(y)[1])
x <- t(matrix(t(x),env$dim,N))
y <- t(matrix(t(y),env$dim,N))
fn <- function(x) sqrt(sum(x^2))
d <- apply(x-y,1,fn)
}
}
power <- 2*env$order-env$dim
switch(1+env$dim%%2,
env$theta*d^power*log(ifelse(d>0,d,1)),
env$theta*d^power)
}
## Return the function and the environment
list(fun=fun,env=env)
}
## Make pseudo phi function for thin-plate splines
mkphi.tp.p <- function(dm,order)
{
## Check inputs
if (!((2*order>dm)&(dm>=1))) {
stop("gss error: thin-plate spline undefined for the parameters")
}
## Create the environment
pol.code <- NULL
for (i in 0:(order^dm-1)) {
ind <- i; code <- NULL
for (j in 1:dm) {
code <- c(code,ind%%order)
ind <- ind%/%order
}
if (sum(code)<order) pol.code <- cbind(pol.code,code)
}
env <- list(dim=dm,pol.code=pol.code)
## Create the phi function
fun <- function(x,nu,env) {
if (env$dim==1) x <- as.matrix(x)
if (env$dim!=dim(x)[2]) {
stop("gss error in phi: inputs are of wrong dimensions")
}
apply(t(x)^env$pol.code[,nu],2,prod)
}
## Return the function and the environment
list(fun=fun,env=env)
}
## Make RK for spherical splines
mkrk.sphere <- function(order)
{
## Create the environment
env <- list(order=order)
## Create the rk function
fun <- function(x,y,env,outer.prod=FALSE) {
##% Check the inputs
if (is.vector(x)) x <- t(as.matrix(x))
if (is.vector(y)) y <- t(as.matrix(y))
if (!(is.matrix(x)&is.matrix(y))) {
stop("gss error in rk: inputs are of wrong types")
}
if ((dim(x)[2]!=2)|(dim(y)[2]!=2)) {
stop("gss error in rk: inputs are of wrong dimensions")
}
if ((max(abs(x[,1]),abs(y[,1]))>90)|(max(abs(x[,2]),abs(y[,2]))>180)) {
stop("gss error in rk: inputs are out of range")
}
##% Convert to radian
lat.x <- x[,1]/180*pi; lon.x <- x[,2]/180*pi
lat.y <- y[,1]/180*pi; lon.y <- y[,2]/180*pi
##% Return the result
rk <- function(lat.x,lon.x,lat.y,lon.y,order) {
z <- cos(lat.x)*cos(lat.y)*cos(lon.x-lon.y)+sin(lat.x)*sin(lat.y)
W <- ifelse(z<1-10^(-10),(1-z)/2,0)
A <- ifelse(W>0,log(1+1/sqrt(W)),0)
C <- ifelse(W>0,2*sqrt(W),0)
switch(order-1,
(A*4*W*(3*W-1)+6*W*(1-C)+1)/2,
(W*W*(A*((840*W-720)*W+72)+420*W*(1-C)+220*C-150)-4*W+3)/12,
(W*W*W*(A*(((27720*W-37800)*W+12600)*W-600)+
(13860*(1-C)*W+14280*C-11970)*W-2772*C+1470)+
15*W*W-3*W+5)/30) - 1/(2*order-1)
}
if (outer.prod) {
zz <- NULL
for (i in 1:length(lat.y))
zz <- cbind(zz,rk(lat.x,lon.x,lat.y[i],lon.y[i],env$order))
}
else zz <- rk(lat.x,lon.x,lat.y,lon.y,env$order)
zz
}
## Return the function and the environment
list(fun=fun,env=env)
}
|