1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
## Calculate Kullback-Leibler projection from sscden objects
project.sscden <- function(object,include,...)
{
mf <- object$mf
term <- object$term
id.basis <- object$id.basis
qd.pt <- object$yquad$pt
qd.wt <- object$yquad$wt
xx.wt <- object$xx.wt
## evaluate full model
x <- object$mf[!object$x.dup.ind,object$xnames,drop=FALSE]
fit0 <- object$fit
## extract terms in subspace
include <- union(object$ynames,include)
nmesh <- length(qd.wt)
nbasis <- length(id.basis)
nx <- length(xx.wt)
qd.s <- NULL
qd.r <- as.list(NULL)
theta <- d <- q <- NULL
nu.wk <- nu <- nq.wk <- nq <- 0
for (label in term$labels) {
vlist <- term[[label]]$vlist
x.list <- object$xnames[object$xnames%in%vlist]
y.list <- object$ynames[object$ynames%in%vlist]
xy.basis <- mf[id.basis,vlist]
qd.xy <- data.frame(matrix(0,nmesh,length(vlist)))
names(qd.xy) <- vlist
qd.xy[,y.list] <- qd.pt[,y.list]
if (length(x.list)) xx <- x[,x.list,drop=FALSE]
else xx <- NULL
nphi <- term[[label]]$nphi
nrk <- term[[label]]$nrk
if (nphi) {
phi <- term[[label]]$phi
for (i in 1:nphi) {
nu.wk <- nu.wk+1
if (is.null(xx)) {
if (!any(label==include)) next
nu <- nu+1
d <- c(d,object$d[nu.wk])
s.wk <- phi$fun(qd.xy[,,drop=TRUE],nu=i,env=phi$env)
wk <- matrix(s.wk,nmesh,nx)
qd.s <- array(c(qd.s,wk),c(nmesh,nx,nu))
}
else {
if (!any(label==include)) next
nu <- nu+1
d <- c(d,object$d[nu.wk])
wk <- NULL
for (j in 1:nx) {
qd.xy[,x.list] <- xx[rep(j,nmesh),]
wk <- cbind(wk,phi$fun(qd.xy,i,phi$env))
}
qd.s <- array(c(qd.s,wk),c(nmesh,nx,nu))
}
}
}
if (nrk) {
rk <- term[[label]]$rk
for (i in 1:nrk) {
nq.wk <- nq.wk+1
if (is.null(xx)) {
if (!any(label==include)) next
nq <- nq+1
theta <- c(theta,object$theta[nq.wk])
qd.r.wk <- rk$fun(qd.xy[,,drop=TRUE],xy.basis,nu=i,env=rk$env,out=TRUE)
qd.r[[nq]] <- qd.r.wk
q <- cbind(q,rk$fun(xy.basis,xy.basis,i,rk$env,out=FALSE))
}
else {
if (!any(label==include)) next
nq <- nq+1
theta <- c(theta,object$theta[nq.wk])
qd.wk <- NULL
for (j in 1:nx) {
qd.xy[,x.list] <- xx[rep(j,nmesh),]
qd.wk <- array(c(qd.wk,rk$fun(qd.xy,xy.basis,i,rk$env,TRUE)),
c(nmesh,nbasis,j))
}
qd.r[[nq]] <- qd.wk
q <- cbind(q,rk$fun(xy.basis,xy.basis,i,rk$env,out=FALSE))
}
}
}
}
if (is.null(qd.s)&is.null(qd.r))
stop("gss error in project.sscden: include some terms")
nnull <- length(d)
nxis <- nbasis+nnull
## calculate projection
rkl <- function(theta1=NULL) {
theta.wk <- 1:nq
theta.wk[fix] <- theta[fix]
if (nq-1) theta.wk[-fix] <- theta1
qd.rs <- array(0,c(nmesh,nbasis,nx))
for (i in 1:nq) {
if (length(dim(qd.r[[i]]))==3) qd.rs <- qd.rs + 10^theta[i]*qd.r[[i]]
else qd.rs <- qd.rs + as.vector(10^theta[i]*qd.r[[i]])
}
qd.rs <- aperm(qd.rs,c(1,3,2))
qd.rs <- array(c(qd.rs,qd.s),c(nmesh,nx,nxis))
qd.rs <- aperm(qd.rs,c(1,3,2))
z <- .Fortran("cdenrkl",
cd=as.double(cd), as.integer(nxis),
as.double(qd.rs), as.integer(nmesh), as.integer(nx),
as.double(xx.wt), as.double(qd.wt), as.double(t(fit0)),
as.double(.Machine$double.eps),
wt=double(nmesh*nx), double(nmesh*nx), double(nxis),
double(nxis), double(nxis*nxis), double(nxis*nxis),
integer(nxis), double(nxis), as.double(1e-6), as.integer(30),
info=integer(1), PACKAGE="gss")
if (z$info==1)
stop("gss error in project.sscden: Newton iteration diverges")
if (z$info==2)
warning("gss warning in project.sscden: Newton iteration fails to converge")
assign("cd",z$cd,inherits=TRUE)
z$wt[1]
}
cv.wk <- function(theta) cv.scale*rkl(theta)+cv.shift
if (nq) {
## initialization
if (!nnull) theta.wk <- 0
else {
qd.r.wk <- array(0,c(nmesh,nbasis,nx))
for (i in 1:nq) {
if (length(dim(qd.r[[i]]))==3) qd.r.wk <- qd.r.wk + 10^theta[i]*qd.r[[i]]
else qd.r.wk <- qd.r.wk + as.vector(10^theta[i]*qd.r[[i]])
}
v.s <- v.r <- 0
for (i in 1:nx) {
mu.s <- apply(fit0[i,]*qd.s[,i,,drop=FALSE],2,sum)
v.s.wk <- apply(fit0[i,]*qd.s[,i,,drop=FALSE]^2,2,sum)-mu.s^2
mu.r <- apply(fit0[i,]*qd.r.wk[,,i,drop=FALSE],2,sum)
v.r.wk <- apply(fit0[i,]*qd.r.wk[,,i,drop=FALSE]^2,2,sum)-mu.r^2
v.s <- v.s + xx.wt[i]*v.s.wk
v.r <- v.r + xx.wt[i]*v.r.wk
}
theta.wk <- log10(sum(v.s)/nnull/sum(v.r)*nbasis) / 2
}
theta <- theta + theta.wk
tmp <- NULL
for (i in 1:nq) tmp <- c(tmp,10^theta[i]*sum(q[,i]))
fix <- rev(order(tmp))[1]
## projection
cd <- c(10^(-theta.wk)*object$c,d)
mesh1 <- NULL
if (nq-1) {
if (object$skip.iter) kl <- rkl(theta[-fix])
else {
if (nq-2) {
## scale and shift cv
tmp <- abs(rkl(theta[-fix]))
cv.scale <- 1
cv.shift <- 0
if (tmp<1&tmp>10^(-4)) {
cv.scale <- 10/tmp
cv.shift <- 0
}
if (tmp<10^(-4)) {
cv.scale <- 10^2
cv.shift <- 10
}
zz <- nlm(cv.wk,theta[-fix],stepmax=.5,ndigit=7)
}
else {
the.wk <- theta[-fix]
repeat {
mn <- the.wk-1
mx <- the.wk+1
zz <- nlm0(rkl,c(mn,mx))
if (min(zz$est-mn,mx-zz$est)>=1e-3) break
else the.wk <- zz$est
}
}
kl <- rkl(zz$est)
}
}
else kl <- rkl()
}
else {
z <- .Fortran("cdenrkl",
cd=as.double(d), as.integer(nnull),
as.double(aperm(qd.s,c(1,3,2))), as.integer(nmesh), as.integer(nx),
as.double(xx.wt), as.double(qd.wt), as.double(t(fit0)),
as.double(.Machine$double.eps),
wt=double(nmesh*nx), double(nmesh*nx), double(nnull),
double(nnull), double(nnull*nnull), double(nnull*nnull),
integer(nnull), double(nnull), as.double(1e-6), as.integer(30),
info=integer(1), PACKAGE="gss")
if (z$info==1)
stop("gss error in project.sscden: Newton iteration diverges")
if (z$info==2)
warning("gss warning in project.sscden: Newton iteration fails to converge")
kl <- z$wt[1]
}
## cfit
cfit <- matrix(1,nmesh,nx)
for (ylab in object$ynames) {
y <- object$mf[[ylab]]
if (is.factor(y)) {
lvl <- levels(y)
if (is.null(object$cnt)) wk <- table(y)
else wk <- table(rep(y,object$cnt))
wk <- wk/sum(wk)
nlvl <- length(wk)
for (j in 1:nlvl) {
id <- (1:nmesh)[qd.pt[,ylab]==lvl[j]]
cfit[id,] <- cfit[id,]*wk[j]
}
}
else {
if (!is.vector(y)) qd.wk <- object$yquad
else qd.wk <- NULL
qd.wk <- object$yquad
form <- as.formula(paste("~",ylab))
wk <- ssden(form,data=object$mf,quad=qd.wk,
domain=object$ydomain,alpha=object$alpha,
id.basis=object$id.basis)
cfit <- cfit*dssden(wk,qd.pt[ylab])
}
}
cfit <- t(cfit*qd.wt)
## return
kl0 <- 0
for (i in 1:nx) {
wk <- sum(log(fit0[i,]/cfit[i,])*fit0[i,])
kl0 <- kl0 + xx.wt[i]*wk
}
list(ratio=kl/kl0,kl=kl)
}
|