File: project.ssden.R

package info (click to toggle)
r-cran-gss 2.1-3-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 1,740 kB
  • ctags: 1,400
  • sloc: fortran: 5,241; ansic: 1,388; makefile: 1
file content (164 lines) | stat: -rw-r--r-- 6,552 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
## Calculate Kullback-Leibler projection from ssden objects
project.ssden <- function(object,include,mesh=FALSE,...)
{
    qd.pt <- object$quad$pt
    qd.wt <- object$quad$wt
    bias <- object$bias
    ## evaluate full model
    mesh0 <- dssden(object,qd.pt)
    qd.wt <- qd.wt*bias$qd.wt
    qd.wt <- t(t(qd.wt)/apply(qd.wt*mesh0,2,sum))
    ## extract terms in subspace
    nqd <- dim(qd.wt)[1]
    nxi <- length(object$id.basis)
    qd.s <- qd.r <- q <- NULL
    theta <- d <- NULL
    n0.wk <- nq.wk <- nq <- 0
    for (label in object$terms$labels) {
        x.basis <- object$mf[object$id.basis,object$term[[label]]$vlist]
        qd.x <- qd.pt[,object$term[[label]]$vlist]
        nphi <- object$term[[label]]$nphi
        nrk <- object$term[[label]]$nrk
        if (nphi) {
            phi <- object$term[[label]]$phi
            for (i in 1:nphi) {
                n0.wk <- n0.wk + 1
                if (!any(label==include)) next
                d <- c(d,object$d[n0.wk])
                qd.s <- cbind(qd.s,phi$fun(qd.x,nu=i,env=phi$env))
            }
        }
        if (nrk) {
            rk <- object$term[[label]]$rk
            for (i in 1:nrk) {
                nq.wk <- nq.wk + 1
                if (!any(label==include)) next
                nq <- nq + 1
                theta <- c(theta,object$theta[nq.wk])
                qd.r <- array(c(qd.r,rk$fun(x.basis,qd.x,nu=i,env=rk$env,out=TRUE)),
                              c(nxi,nqd,nq))
                q <- cbind(q,rk$fun(x.basis,x.basis,nu=i,env=rk$env,out=FALSE))
            }
        }
    }
    if (is.null(qd.s)&is.null(qd.r))
        stop("gss error in project.ssden: include some terms")
    if (!is.null(qd.s)) {
        nn <- nxi + ncol(qd.s)
        qd.s <- t(qd.s)
    }
    else nn <- nxi
    ## calculate projection
    rkl <- function(theta1=NULL) {
        theta.wk <- 1:nq
        theta.wk[fix] <- theta[fix]
        if (nq-1) theta.wk[-fix] <- theta1
        qd.rs <- 0
        for (i in 1:nq) qd.rs <- qd.rs + 10^theta.wk[i]*qd.r[,,i]
        qd.rs <- rbind(qd.rs,qd.s)
        z <- .Fortran("drkl",
                      cd=as.double(cd), as.integer(nn),
                      as.double(t(qd.rs)), as.integer(nqd), as.integer(bias$nt),
                      as.double(bias$wt), as.double(t(qd.wt)),
                      mesh=as.double(mesh0), as.double(.Machine$double.eps),
                      as.double(1e-6), as.integer(30), integer(nn),
                      double(2*bias$nt*(nqd+1)+nn*(2*nn+4)), info=integer(1),
                      PACKAGE="gss")
        if (z$info==1)
            stop("gss error in project.ssden: Newton iteration diverges")
        if (z$info==2)
            warning("gss warning in project.ssden: Newton iteration fails to converge")
        assign("cd",z$cd,inherits=TRUE)
        assign("mesh1",z$mesh,inherits=TRUE)
        sum(bias$wt*(apply(qd.wt*log(mesh0/mesh1)*mesh0,2,sum)+
                     log(apply(qd.wt*mesh1,2,sum))))
    }
    cv.wk <- function(theta) cv.scale*rkl(theta)+cv.shift
    if (nq) {
        ## initialization
        if (is.null(qd.s)) theta.wk <- 0
        else {
            qd.r.wk <- 0
            for (i in 1:nq) qd.r.wk <- qd.r.wk + 10^theta[i]*qd.r[,,i]
            vv.s <- vv.r <- 0
            for (i in 1:bias$nt) {
                mu.s <- apply(qd.wt[,i]*qd.s,2,sum)/sum(qd.wt[,i])
                v.s <- apply(qd.wt[,i]*qd.s^2,2,sum)/sum(qd.wt[,i])
                v.s <- v.s - mu.s^2
                mu.r <- apply(qd.wt[,i]*qd.r.wk,2,sum)/sum(qd.wt[,i])
                v.r <- apply(qd.wt[,i]*qd.r.wk^2,2,sum)/sum(qd.wt[,i])
                v.r <- v.r - mu.r^2
                vv.s <- vv.s + bias$wt[i]*v.s
                vv.r <- vv.r + bias$wt[i]*v.r
            }
            theta.wk <- log10(sum(vv.s)/(nn-nxi)/sum(vv.r)*nxi) / 2
        }
        theta <- theta + theta.wk
        tmp <- NULL
        for (i in 1:nq) tmp <- c(tmp,10^theta[i]*sum(q[,i]))
        fix <- rev(order(tmp))[1]
        ## projection
        cd <- c(10^(-theta.wk)*object$c,d)
        mesh1 <- NULL
        if (nq-1) {
            if (object$skip.iter) kl <- rkl(theta[-fix])
            else {
                if (nq-2) {
                    ## scale and shift cv
                    tmp <- abs(rkl(theta[-fix]))
                    cv.scale <- 1
                    cv.shift <- 0
                    if (tmp<1&tmp>10^(-4)) {
                        cv.scale <- 10/tmp
                        cv.shift <- 0
                    }
                    if (tmp<10^(-4)) {
                        cv.scale <- 10^2
                        cv.shift <- 10
                    }
                    zz <- nlm(cv.wk,theta[-fix],stepmax=.5,ndigit=7)
                }
                else {
                    the.wk <- theta[-fix]
                    repeat {
                        mn <- the.wk-1
                        mx <- the.wk+1
                        zz <- nlm0(rkl,c(mn,mx))
                        if (min(zz$est-mn,mx-zz$est)>=1e-3) break
                        else the.wk <- zz$est
                    }
                }
                kl <- rkl(zz$est)
            }
        }
        else kl <- rkl()
    }
    else {
        nn <- nrow(qd.s)
        z <- .Fortran("drkl",
                      cd=as.double(d), as.integer(nn),
                      as.double(qd.s), as.integer(nqd), as.integer(bias$nt),
                      as.double(bias$wt), as.double(t(qd.wt)),
                      mesh=as.double(mesh0), as.double(.Machine$double.eps),
                      as.double(1e-6), as.integer(30), integer(nn),
                      double(2*bias$nt*(nqd+1)+nn*(2*nn+4)), info=integer(1),
                      PACKAGE="gss")
        if (z$info==1)
            stop("gss error in project.ssden: Newton iteration diverges")
        if (z$info==2)
            warning("gss warning in project.ssden: Newton iteration fails to converge")
        mesh1 <- z$mesh
        kl <- sum(bias$wt*(apply(qd.wt*log(mesh0/mesh1)*mesh0,2,sum)+
                           log(apply(qd.wt*mesh1,2,sum))))
    }
    kl0 <- sum(bias$wt*(apply(qd.wt*log(mesh0)*mesh0,2,sum)+
                        log(apply(qd.wt,2,sum))))
    kl <- sum(bias$wt*(apply(qd.wt*log(mesh0/mesh1)*mesh0,2,sum)+
                       log(apply(qd.wt*mesh1,2,sum))))
    wt.wk <- t(t(qd.wt)/apply(qd.wt*mesh1,2,sum))
    kl1 <- sum(bias$wt*(apply(wt.wk*log(mesh1)*mesh1,2,sum)+
                        log(apply(wt.wk,2,sum))))
    obj <- list(ratio=kl/kl0,kl=kl,check=(kl+kl1)/kl0)
    if (mesh) obj$mesh <- mesh1
    obj
}