1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
## Calculate square error projection from sshzd1 objects
project.sshzd1 <- function(object,include,...)
{
if (!(object$tname%in%include))
stop("gss error in project.sshzd1: time main effect missing in included terms")
## Initialization
term <- object$term
mf <- object$mf
xnames <- object$xnames
tname <- object$tname
id.basis <- object$id.basis
yy <- object$yy
quad <- object$quad
x.pt <- object$x.pt
qd.wt <- object$qd.wt
## Calculate cross integrals of phi and rk
s <- object$int.s
r <- object$int.r
ns <- length(s)
nq <- length(object$theta)
nx <- dim(qd.wt)[2]
nbasis <- dim(r)[1]
## create arrays
ss <- 0
sr <- array(0,c(ns,nbasis,nq))
rr <- array(0,c(nbasis,nbasis,nq,nq))
for (k in 1:nx) {
ind <- (1:length(quad$pt))[qd.wt[,k]>0]
nmesh <- length(ind)
if (!nmesh) next
qd.wt.wk <- qd.wt[ind,k]
qd.s <- NULL
qd.r <- as.list(NULL)
iq <- 0
for (label in term$labels) {
if (label=="1") {
qd.wk <- rep(1,nmesh)
qd.s <- cbind(qd.s,qd.wk)
next
}
vlist <- term[[label]]$vlist
x.list <- xnames[xnames%in%vlist]
xy.basis <- mf[id.basis,vlist]
qd.xy <- data.frame(matrix(0,nmesh,length(vlist)))
names(qd.xy) <- vlist
if (tname%in%vlist) qd.xy[,tname] <- quad$pt[ind]
if (length(x.list)) qd.xy[,x.list] <- x.pt[rep(k,nmesh),x.list,drop=FALSE]
nphi <- term[[label]]$nphi
nrk <- term[[label]]$nrk
if (nphi) {
phi <- term[[label]]$phi
for (i in 1:nphi) {
qd.wk <- phi$fun(qd.xy[,,drop=TRUE],nu=i,env=phi$env)
qd.s <- cbind(qd.s,qd.wk)
}
}
if (nrk) {
rk <- term[[label]]$rk
for (i in 1:nrk) {
iq <- iq+1
qd.r[[iq]] <- rk$fun(qd.xy[,,drop=TRUE],xy.basis,i,rk$env,out=TRUE)
}
}
}
if (!is.null(object$partial)) {
wk <- object$partial$pt[k,]
qd.s <- cbind(qd.s,t(matrix(wk,length(wk),nmesh)))
}
ss <- ss + t(qd.wt.wk*qd.s)%*%qd.s
for (i in 1:nq) {
sr[,,i] <- sr[,,i] + t(qd.wt.wk*qd.s)%*%qd.r[[i]]
for (j in 1:i) {
rr.wk <- t(qd.wt.wk*qd.r[[i]])%*%qd.r[[j]]
rr[,,i,j] <- rr[,,i,j] + rr.wk
if (i-j) rr[,,j,i] <- rr[,,j,i] + t(rr.wk)
}
}
}
## evaluate full model
cfit <- log(object$cfit)
d <- object$d
c <- object$c
theta <- object$theta
s.eta <- ss%*%d
r.eta <- tmp <- NULL
r.wk <- sr.wk <- rr.wk <- 0
for (i in 1:nq) {
tmp <- c(tmp,10^(2*theta[i])*sum(diag(rr[,,i,i])))
s.eta <- s.eta + 10^theta[i]*sr[,,i]%*%c
if (length(d)==1) r.eta.wk <- sr[,,i]*d
else r.eta.wk <- t(sr[,,i])%*%d
r.wk <- r.wk + 10^theta[i]*r[,i]
sr.wk <- sr.wk + 10^theta[i]*sr[,,i]
for (j in 1:nq) {
r.eta.wk <- r.eta.wk + 10^theta[j]*rr[,,i,j]%*%c
rr.wk <- rr.wk + 10^(theta[i]+theta[j])*rr[,,i,j]
}
r.eta <- cbind(r.eta,r.eta.wk)
}
eta2 <- sum(c*(rr.wk%*%c)) + sum(d*(ss%*%d)) + 2*sum(d*(sr.wk%*%c))
mse <- eta2 - 2*sum(c(d,c)*c(s,r.wk))*cfit + cfit^2*sum(qd.wt)
## extract terms in subspace
id.s <- id.q <- NULL
for (label in term$labels) {
if (label=="1") {
id.s <- c(id.s,1)
next
}
if (!any(label==include)) next
term.wk <- term[[label]]
if (term.wk$nphi>0) id.s <- c(id.s,term.wk$iphi+(1:term.wk$nphi)-1)
if (term.wk$nrk>0) id.q <- c(id.q,term.wk$irk+(1:term.wk$nrk)-1)
}
if (!is.null(object$partial)) {
nu <- length(object$d)-length(object$lab.p)
for (label in object$lab.p) {
nu <- nu+1
if (!any(label==include)) next
id.s <- c(id.s,nu)
}
}
## calculate projection
rkl <- function(theta1=NULL) {
theta.wk <- 1:nq
theta.wk[fix] <- theta[fix]
if (nq0-1) theta.wk[id.q0] <- theta1
##
ss.wk <- ss[id.s,id.s]
r.eta.wk <- sr.wk <- rr.wk <- 0
for (i in id.q) {
r.eta.wk <- r.eta.wk + 10^theta.wk[i]*r.eta[,i]
sr.wk <- sr.wk + 10^theta.wk[i]*sr[id.s,,i]
for (j in id.q) {
rr.wk <- rr.wk + 10^(theta.wk[i]+theta.wk[j])*rr[,,i,j]
}
}
v <- cbind(rbind(ss.wk,t(sr.wk)),rbind(sr.wk,rr.wk))
mu <- c(s.eta[id.s],r.eta.wk)
nn <- length(mu)
z <- chol(v,pivot=TRUE)
v <- z
rkv <- attr(z,"rank")
m.eps <- .Machine$double.eps
while (v[rkv,rkv]<2*sqrt(m.eps)*v[1,1]) rkv <- rkv - 1
if (rkv<nn) v[(1:nn)>rkv,(1:nn)>rkv] <- diag(v[1,1],nn-rkv)
mu <- backsolve(v,mu[attr(z,"pivot")],transpose=TRUE)
eta2 - sum(mu[1:rkv]^2)
}
cv.wk <- function(theta) cv.scale*rkl(theta)+cv.shift
## initialization
nq0 <- length(id.q)
tmp[-id.q] <- 0
fix <- rev(order(tmp))[1]
## projection
if (nq0-1) {
id.q0 <- id.q[id.q!=fix]
if (object$skip.iter) se <- rkl(theta[id.q0])
else {
if (nq0-2) {
## scale and shift cv
tmp <- abs(rkl(theta[id.q0]))
cv.scale <- 1
cv.shift <- 0
if (tmp<1&tmp>10^(-4)) {
cv.scale <- 10/tmp
cv.shift <- 0
}
if (tmp<10^(-4)) {
cv.scale <- 10^2
cv.shift <- 10
}
zz <- nlm(cv.wk,theta[id.q0],stepmax=.5,ndigit=7)
}
else {
the.wk <- theta[id.q0]
repeat {
mn <- the.wk-1
mx <- the.wk+1
zz <- nlm0(rkl,c(mn,mx))
if (min(zz$est-mn,mx-zz$est)>=1e-3) break
else the.wk <- zz$est
}
}
se <- rkl(zz$est)
}
}
else se <- rkl()
list(ratio=se/mse,se=se)
}
|