File: sscox.R

package info (click to toggle)
r-cran-gss 2.1-3-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 1,740 kB
  • ctags: 1,400
  • sloc: fortran: 5,241; ansic: 1,388; makefile: 1
file content (503 lines) | stat: -rw-r--r-- 18,658 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
## Fit hazard model
sscox <- function(formula,type=NULL,data=list(),weights=NULL,subset,
                  na.action=na.omit,partial=NULL,alpha=1.4,
                  id.basis=NULL,nbasis=NULL,seed=NULL,random=NULL,
                  prec=1e-7,maxiter=30,skip.iter=FALSE)
{
    ## Local functions handling formula
    Surv <- function(time,status,start=0) {
        if (!is.numeric(time)|!is.vector(time))
            stop("gss error in sscox: time should be a numerical vector")
        if ((nobs <- length(time))-length(status))
            stop("gss error in sscox: time and status mismatch in size")
        if ((length(start)-nobs)&(length(start)-1))
            stop("gss error in sscox: time and start mismatch in size")
        if (any(start>time))
            stop("gss error in sscox: start after follow-up time")
        if (min(start)<0)
            warning("gss warning in sscox: start before time 0")
        time <- cbind(start,time)
        list(start=time[,1],end=time[,2],status=as.logical(status))
    }
    ## Obtain model frame and model terms
    mf <- match.call()
    mf$type <- mf$alpha <- mf$random <- mf$partial <- NULL
    mf$id.basis <- mf$nbasis <- mf$seed <- NULL
    mf$prec <- mf$maxiter <- mf$skip.iter <- NULL
    term.wk <- terms.formula(formula)
    ## response
    resp <- attr(term.wk,"variable")[[2]]
    ind.wk <- length(strsplit(deparse(resp),'')[[1]])
    if ((substr(deparse(resp),1,5)!='Surv(')
        |(substr(deparse(resp),ind.wk,ind.wk)!=')'))
        stop("gss error in sscox: response should be Surv(...)")
    yy <- with(data,eval(resp))
    ## model frame
    term.labels <- attr(term.wk,"term.labels")
    mf[[1]] <- as.name("model.frame")
    mf[[2]] <- eval(parse(text=paste("~",paste(term.labels,collapse="+"),"-1")))
    mf <- eval(mf,parent.frame())
    ## trim yy if subset is used
    nobs <- nrow(mf)
    if (nobs<length(yy$end)) {
        yy$start <- yy$start[subset]
        yy$end <- yy$end[subset]
        yy$status <- yy$status[subset]
    }
    ## Generate sub-basis
    cnt <- model.weights(mf)
    if (!is.null(cnt)) mf["(weights)"] <- NULL
    if (is.null(id.basis)) {
        if (is.null(nbasis)) nbasis <- max(30,ceiling(10*nobs^(2/9)))
        if (nbasis>sum(yy$status)) nbasis <- sum(yy$status)
        if (!is.null(seed)) set.seed(seed)
        id.basis <- sample((1:nobs)[yy$status],nbasis,prob=cnt[yy$status])
    }
    else {
        if (!all(id.basis%in%(1:nobs)[yy$status]))
            stop("gss error in sscox: id.basis not all at failure cases")
        nbasis <- length(id.basis)
    }
    id.wk <- NULL
    nT <- sum(yy$status)
    for (i in 1:nbasis) {
        id.wk <- c(id.wk,(1:nT)[(1:nobs)[yy$status]%in%id.basis[i]])
    }
    ## Generate terms    
    term <- mkterm(mf,type)
    term$labels <- term$labels[term$labels!="1"]
    ## Generate random
    if (!is.null(random)) {
        if (class(random)=="formula") random <- mkran(random,data)
        random$qd.z <- random$z
        random$z <- random$z[yy$status,]
    }
    ## Generate s and r
    s <- qd.s <- r <- qd.r <- NULL
    nq <- 0
    for (label in term$labels) {
        x.basis <- mf[id.basis,term[[label]]$vlist]
        qd.x <- mf[,term[[label]]$vlist]
        nphi <- term[[label]]$nphi
        nrk <- term[[label]]$nrk
        if (nphi) {
            phi <- term[[label]]$phi
            for (i in 1:nphi) {
                s.wk <- phi$fun(qd.x,nu=i,env=phi$env)
                s <- cbind(s,s.wk[yy$status])
                qd.s <- cbind(qd.s,s.wk)
            }
        }
        if (nrk) {
            rk <- term[[label]]$rk
            for (i in 1:nrk) {
                nq <- nq+1
                r.wk <- rk$fun(qd.x,x.basis,nu=i,env=rk$env,out=TRUE)
                r <- array(c(r,r.wk[yy$status,]),c(nT,nbasis,nq))
                qd.r <- array(c(qd.r,r.wk),c(nobs,nbasis,nq))
            }
        }
    }
    ## Add the partial term
    if (!is.null(partial)) {
        mf.p <- model.frame(partial,data)
        for (lab in colnames(mf.p)) mf[,lab] <- mf.p[,lab]
        mt.p <- attr(mf.p,"terms")
        lab.p <- labels(mt.p)
        matx.p <- model.matrix(mt.p,data)[,-1,drop=FALSE]
        if (dim(matx.p)[1]!=dim(mf)[1])
            stop("gss error in sscox: partial data are of wrong size")
        matx.p <- scale(matx.p)
        center.p <- attr(matx.p,"scaled:center")
        scale.p <- attr(matx.p,"scaled:scale")
        s <- cbind(s,matx.p[yy$status,])
        qd.s <- cbind(qd.s,matx.p)
        part <- list(mt=mt.p,center=center.p,scale=scale.p)
    }
    else part <- lab.p <- NULL
    ## Check s rank
    if (!is.null(s)) {
        nnull <- dim(s)[2]
        if (qr(s)$rank<nnull)
            stop("gss error in sscox: unpenalized terms are linearly dependent")
    }
    ## Generate quadrature and biasing weights
    if (is.null(cnt)) {
        qd.wt <- rep(1,dim(mf)[1])
        cntt <- NULL
        b.wt <- rep(1/nT,nT)
    }
    else {
        qd.wt <- cnt
        cntt <- cnt[yy$status]
        b.wt <- cntt/sum(cntt)
    }
    tt <- yy$end[yy$status]
    t.wt <- (outer(yy$end,tt,">=")&outer(yy$start,tt,"<="))/1
    bias0 <- list(nt=nT,wt=b.wt,qd.wt=t.wt)
    ## Fit the model
    if (nq==1) {
        r <- r[,,1]
        qd.r <- qd.r[,,1]
        z <- sspcox(s,r,r[id.wk,],cntt,qd.s,qd.r,qd.wt,prec,maxiter,alpha,random,bias0)
    }
    else z <- mspcox(s,r,id.wk,cntt,qd.s,qd.r,qd.wt,prec,maxiter,alpha,random,bias0,skip.iter)
    ## Brief description of model terms
    desc <- NULL
    for (label in term$labels)
        desc <- rbind(desc,as.numeric(c(term[[label]][c("nphi","nrk")])))
    if (!is.null(partial)) {
        desc <- rbind(desc,matrix(c(1,0),length(lab.p),2,byrow=TRUE))
    }
    desc <- rbind(desc,apply(desc,2,sum))
    if (is.null(partial)) rownames(desc) <- c(term$labels,"total")
    else rownames(desc) <- c(term$labels,lab.p,"total")
    colnames(desc) <- c("Unpenalized","Penalized")
    ## Return the results
    obj <- c(list(call=match.call(),mf=mf,cnt=cnt,terms=term,desc=desc,
                  alpha=alpha,id.basis=id.basis,partial=part,lab.p=lab.p,
                  random=random,bias=bias0,skip.iter=skip.iter),z)
    Nobs <- ifelse(is.null(cnt),nT,sum(cntt))
    obj$se.aux$v <- sqrt(Nobs)*obj$se.aux$v
    class(obj) <- c("sscox")
    obj
}

## Fit single smoothing parameter density
sspcox <- function(s,r,q,cnt,qd.s,qd.r,qd.wt,prec,maxiter,alpha,random,bias)
{
    nobs <- dim(r)[1]
    nxi <- dim(r)[2]
    nqd <- length(qd.wt)
    if (!is.null(s)) nnull <- dim(s)[2]
    else nnull <- 0
    if (!is.null(random)) nz <- ncol(as.matrix(random$z))
    else nz <- 0
    nxiz <- nxi + nz
    nn <- nxiz + nnull
    if (is.null(cnt)) cnt <- 0
    ## cv function
    cv <- function(lambda) {
        if (is.null(random)) q.wk0 <- 10^(lambda+theta)*q
        else {
            q.wk0 <- matrix(0,nxiz,nxiz)
            q.wk0[1:nxi,1:nxi] <- 10^(lambda[1]+theta)*q
            q.wk0[(nxi+1):nxiz,(nxi+1):nxiz] <-
                10^(2*ran.scal)*random$sigma$fun(lambda[-1],random$sigma$env)
        }
        fit <- .Fortran("dnewton",
                        cd=as.double(cd), as.integer(nn),
                        as.double(q.wk0), as.integer(nxiz),
                        as.double(t(cbind(r.wk,s))), as.integer(nobs),
                        as.integer(sum(cnt)), as.integer(cnt),
                        as.double(cbind(qd.r.wk,qd.s)), as.integer(nqd),
                        as.integer(bias$nt), as.double(bias$wt),
                        as.double(t(qd.wt*bias$qd.wt)),
                        as.double(prec), as.integer(maxiter),
                        as.double(.Machine$double.eps), integer(nn),
                        wk=double(2*((nqd+1)*bias$nt+nobs)+nn*(2*nn+4)+max(nn,3)),
                        info=integer(1),PACKAGE="gss")
        if (fit$info==1) stop("gss error in sscox: Newton iteration diverges")
        if (fit$info==2) warning("gss warning in sscox: Newton iteration fails to converge")
        assign("cd",fit$cd,inherits=TRUE)
        cv <- alpha*fit$wk[2]-fit$wk[1]
        alpha.wk <- max(0,log.la0-lambda-5)*(3-alpha) + alpha
        alpha.wk <- min(alpha.wk,3)
        adj <- ifelse (alpha.wk>alpha,(alpha.wk-alpha)*fit$wk[2],0)
        cv+adj
    }
    cv.wk <- function(lambda) cv.scale*cv(lambda)+cv.shift
    ## initialization
    if (!nnull) {
        vv.r <- 0
        for (i in 1:bias$nt) {
            wt.wk <- qd.wt*bias$qd.wt[,i]
            mu.r <- apply(wt.wk*qd.r,2,sum)/sum(wt.wk)
            v.r <- apply(wt.wk*qd.r^2,2,sum)/sum(wt.wk)
            v.r <- v.r - mu.r^2
            vv.r <- vv.r + bias$wt[i]*v.r
        }
        theta <- 0
    }
    else {
        vv.s <- vv.r <- 0
        for (i in 1:bias$nt) {
            wt.wk <- qd.wt*bias$qd.wt[,i]
            mu.s <- apply(wt.wk*qd.s,2,sum)/sum(wt.wk)
            v.s <- apply(wt.wk*qd.s^2,2,sum)/sum(wt.wk)
            v.s <- v.s - mu.s^2
            mu.r <- apply(wt.wk*qd.r,2,sum)/sum(wt.wk)
            v.r <- apply(wt.wk*qd.r^2,2,sum)/sum(wt.wk)
            v.r <- v.r - mu.r^2
            vv.s <- vv.s + bias$wt[i]*v.s
            vv.r <- vv.r + bias$wt[i]*v.r
        }
        theta <- log10(sum(vv.s)/nnull/sum(vv.r)*nxi) / 2
    }
    log.la0 <- log10(sum(vv.r)/sum(diag(q))) + theta
    if (!is.null(random)) {
        mu.z <- apply(qd.wt*random$qd.z,2,sum)
        v.z <- apply(qd.wt*random$qd.z^2,2,sum)
        ran.scal <- theta - log10(sum(v.z-mu.z^2)/nz/sum(v.r-mu.r^2)*nxi) / 2
        r.wk <- cbind(10^theta*r,10^ran.scal*random$z)
        qd.r.wk <- cbind(10^theta*qd.r,10^ran.scal*random$qd.z)
    }
    else {
        ran.scal <- NULL
        r.wk <- 10^theta*r
        qd.r.wk <- 10^theta*qd.r
    }
    ## lambda search
    cd <- rep(0,nn)
    if (is.null(random)) la <- log.la0
    else la <- c(log.la0,random$init)
    if (length(la)-1) {
        counter <- 0
        ## scale and shift cv
        tmp <- abs(cv(la))
        cv.scale <- 1
        cv.shift <- 0
        if (tmp<1&tmp>10^(-4)) {
            cv.scale <- 10/tmp
            cv.shift <- 0
        }
        if (tmp<10^(-4)) {
            cv.scale <- 10^2
            cv.shift <- 10
        }
        repeat {
            zz <- nlm(cv.wk,la,stepmax=1,ndigit=7)
            if (zz$code<=3) break
            la <- zz$est
            counter <- counter + 1
            if (counter>=5) {
                warning("gss warning in sscox: iteration for model selection fails to converge")
                break
            }
        }
        cv <- (zz$min-cv.shift)/cv.scale
    }
    else {
        mn0 <- log.la0-6
        mx0 <- log.la0+6
        repeat {
            mn <- max(la-1,mn0)
            mx <- min(la+1,mx0)
            zz <- nlm0(cv,c(mn,mx))
            if ((min(zz$est-mn,mx-zz$est)>=1e-1)||
                (min(zz$est-mn0,mx0-zz$est)<1e-1)) break
            else la <- zz$est
        }
        cv <- zz$min
    }
    ## return
    if (is.null(random)) {
        lambda <- zz$est
        zeta <- NULL
    }
    else {
        lambda <- zz$est[1]
        zeta <- zz$est[-1]
    }
    if (is.null(random)) {
        q.wk0 <- 10^(lambda+theta)*q
        qd.r.wk <- 10^theta*qd.r
    }
    else {
        q.wk0 <- matrix(0,nxiz,nxiz)
        q.wk0[1:nxi,1:nxi] <- 10^(lambda+theta)*q
        q.wk0[(nxi+1):nxiz,(nxi+1):nxiz] <-
          10^(2*ran.scal)*random$sigma$fun(zeta,random$sigma$env)
        qd.r.wk <- cbind(10^theta*qd.r,10^ran.scal*random$qd.z)
    }
    se.aux <- .Fortran("coxaux",
                       as.double(cd), as.integer(nn),
                       as.double(q.wk0), as.integer(nxiz),
                       as.double(cbind(qd.r.wk,qd.s)), as.integer(nqd),
                       as.integer(bias$nt), as.double(bias$wt),
                       as.double(.Machine$double.eps),
                       as.double(qd.wt*bias$qd.wt),
                       double(nqd*bias$nt), double(bias$nt),
                       double(nn), v=double(nn*nn), double(nn*nn),
                       jpvt=integer(nn), PACKAGE="gss")[c("v","jpvt")]
    c <- cd[1:nxi]
    if (nz) b <- 10^ran.scal*cd[nxi+(1:nz)]
    else b <- NULL
    if (nnull) d <- cd[nxiz+(1:nnull)]
    else d <- NULL
    return(list(lambda=lambda,zeta=zeta,theta=theta,ran.scal=ran.scal,
                c=c,b=b,d=d,cv=cv,se.aux=se.aux))
}

## Fit multiple smoothing parameter density
mspcox <- function(s,r,id.basis,cnt,qd.s,qd.r,qd.wt,prec,maxiter,alpha,random,bias,skip.iter)
{
    nobs <- dim(r)[1]
    nxi <- dim(r)[2]
    nq <- dim(r)[3]
    nqd <- length(qd.wt)
    if (!is.null(s)) nnull <- dim(s)[2]
    else nnull <- 0
    if (!is.null(random)) nz <- ncol(as.matrix(random$z))
    else nz <- 0
    nxiz <- nxi + nz
    nn <- nxiz + nnull
    if (is.null(cnt)) cnt <- 0
    ## cv function
    cv <- function(theta) {
        ind.wk <- theta[1:nq]!=theta.old
        if (sum(ind.wk)==nq) {
            r.wk0 <- qd.r.wk0 <- 0
            for (i in 1:nq) {
                r.wk0 <- r.wk0 + 10^theta[i]*r[,,i]
                qd.r.wk0 <- qd.r.wk0 + 10^theta[i]*qd.r[,,i]
            }
            assign("r.wk",r.wk0+0,inherits=TRUE)
            assign("qd.r.wk",qd.r.wk0+0,inherits=TRUE)
            assign("theta.old",theta[1:nq]+0,inherits=TRUE)
        }
        else {
            r.wk0 <- r.wk
            qd.r.wk0 <- qd.r.wk
            for (i in (1:nq)[ind.wk]) {
                theta.wk <- (10^(theta[i]-theta.old[i])-1)*10^theta.old[i]
                r.wk0 <- r.wk0 + theta.wk*r[,,i]
                qd.r.wk0 <- qd.r.wk0 + theta.wk*qd.r[,,i]
            }
        }
        q.wk <- r.wk0[id.basis,]
        if (is.null(random)) q.wk0 <- 10^(lambda)*q.wk
        else {
            r.wk0 <- cbind(r.wk0,10^ran.scal*random$z)
            qd.r.wk0 <- cbind(qd.r.wk0,10^ran.scal*random$qd.z)
            q.wk0 <- matrix(0,nxiz,nxiz)
            q.wk0[1:nxi,1:nxi] <- 10^(lambda)*q.wk
            q.wk0[(nxi+1):nxiz,(nxi+1):nxiz] <-
              10^(2*ran.scal)*random$sigma$fun(theta[-(1:nq)],random$sigma$env)
        }
        fit <- .Fortran("dnewton",
                        cd=as.double(cd), as.integer(nn),
                        as.double(q.wk0), as.integer(nxiz),
                        as.double(t(cbind(r.wk0,s))), as.integer(nobs),
                        as.integer(sum(cnt)), as.integer(cnt),
                        as.double(cbind(qd.r.wk0,qd.s)), as.integer(nqd),
                        as.integer(bias$nt), as.double(bias$wt),
                        as.double(t(qd.wt*bias$qd.wt)),
                        as.double(prec), as.integer(maxiter),
                        as.double(.Machine$double.eps), integer(nn),
                        wk=double(2*((nqd+1)*bias$nt+nobs)+nn*(2*nn+4)+max(nn,3)),
                        info=integer(1),PACKAGE="gss")
        if (fit$info==1) stop("gss error in ssden: Newton iteration diverges")
        if (fit$info==2) warning("gss warning in ssden: Newton iteration fails to converge")
        assign("cd",fit$cd,inherits=TRUE)
        cv <- alpha*fit$wk[2]-fit$wk[1]
        alpha.wk <- max(0,theta-log.th0-5)*(3-alpha) + alpha
        alpha.wk <- min(alpha.wk,3)
        adj <- ifelse (alpha.wk>alpha,(alpha.wk-alpha)*fit$wk[2],0)
        cv+adj
    }
    cv.wk <- function(theta) cv.scale*cv(theta)+cv.shift
    ## initialization
    theta <- -log10(apply(r[id.basis,,],3,function(x)sum(diag(x))))
    r.wk <- qd.r.wk <- 0
    for (i in 1:nq) {
        r.wk <- r.wk + 10^theta[i]*r[,,i]
        qd.r.wk <- qd.r.wk + 10^theta[i]*qd.r[,,i]
    }
    ## theta adjustment
    z <- sspcox(s,r.wk,r.wk[id.basis,],cnt,qd.s,qd.r.wk,qd.wt,prec,maxiter,alpha,random,bias)
    theta <- theta + z$theta
    r.wk <- qd.r.wk <- 0
    for (i in 1:nq) {
        theta[i] <- 2*theta[i] + log10(t(z$c)%*%r[id.basis,,i]%*%z$c)
        r.wk <- r.wk + 10^theta[i]*r[,,i]
        qd.r.wk <- qd.r.wk + 10^theta[i]*qd.r[,,i]
    }
    mu <- apply(qd.wt*qd.r.wk,2,sum)/sum(qd.wt)
    v <- apply(qd.wt*qd.r.wk^2,2,sum)/sum(qd.wt)
    log.la0 <- log10(sum(v-mu^2)/sum(diag(r.wk[id.basis,])))
    log.th0 <- theta-log.la0
    ## lambda search
    z <- sspcox(s,r.wk,r.wk[id.basis,],cnt,qd.s,qd.r.wk,qd.wt,prec,maxiter,alpha,random,bias)
    ## early return
    if (skip.iter) {
        z$theta <- theta
        return(z)
    }
    ## theta search
    lambda <- z$lambda
    log.th0 <- log.th0 + z$lambda
    theta <- theta + z$theta
    ran.scal <- z$ran.scal
    cd <- c(z$c,z$b,z$d)
    counter <- 0
    r.wk <- qd.r.wk <- 0
    for (i in 1:nq) {
        r.wk <- r.wk + 10^theta[i]*r[,,i]
        qd.r.wk <- qd.r.wk + 10^theta[i]*qd.r[,,i]
    }
    theta.old <- theta
    if (!is.null(random)) theta <- c(theta,zeta)
    ## scale and shift cv
    tmp <- abs(cv(theta))
    cv.scale <- 1
    cv.shift <- 0
    if (tmp<1&tmp>10^(-4)) {
        cv.scale <- 10/tmp
        cv.shift <- 0
    }
    if (tmp<10^(-4)) {
        cv.scale <- 10^2
        cv.shift <- 10
    }
    repeat {
        zz <- nlm(cv.wk,theta,stepmax=1,ndigit=7)
        if (zz$code<=3)  break
        theta <- zz$est        
        counter <- counter + 1
        if (counter>=5) {
            warning("gss warning in sscox: CV iteration fails to converge")
            break
        }
    }
    cv <- (zz$min-cv.shift)/cv.scale
    if (is.null(random)) {
        theta <- zz$est
        zeta <- NULL
    }
    else {
        theta <- zz$est[1:nq]
        zeta <- zz$est[-(1:nq)]
    }
    ## return
    q.wk <- qd.r.wk <- 0
    for (i in 1:nq) {
        q.wk <- q.wk + 10^theta[i]*r[id.basis,,i]
        qd.r.wk <- qd.r.wk + 10^theta[i]*qd.r[,,i]
    }
    if (is.null(random)) q.wk0 <- 10^(lambda)*q.wk
    else {
        q.wk0 <- matrix(0,nxiz,nxiz)
        q.wk0[1:nxi,1:nxi] <- 10^(lambda)*q.wk
        q.wk0[(nxi+1):nxiz,(nxi+1):nxiz] <-
          10^(2*ran.scal)*random$sigma$fun(zeta,random$sigma$env)
        qd.r.wk <- cbind(qd.r.wk,10^ran.scal*random$qd.z)
    }
    se.aux <- .Fortran("coxaux",
                       as.double(cd), as.integer(nn),
                       as.double(q.wk0), as.integer(nxiz),
                       as.double(cbind(qd.r.wk,qd.s)), as.integer(nqd),
                       as.integer(bias$nt), as.double(bias$wt),
                       as.double(.Machine$double.eps),
                       as.double(qd.wt*bias$qd.wt),
                       double(nqd*bias$nt), double(bias$nt),
                       double(nn), v=double(nn*nn), double(nn*nn),
                       jpvt=integer(nn), PACKAGE="gss")[c("v","jpvt")]
    c <- cd[1:nxi]
    if (nz) b <- 10^ran.scal*cd[nxi+(1:nz)]
    else b <- NULL
    if (nnull) d <- cd[nxiz+(1:nnull)]
    else d <- NULL
    return(list(lambda=lambda,zeta=zeta,theta=theta,ran.scal=ran.scal,
                c=c,b=b,d=d,cv=cv,se.aux=se.aux))
}