1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
## Fit density model
ssden <- function(formula,type=NULL,data=list(),alpha=1.4,
weights=NULL,subset,na.action=na.omit,
id.basis=NULL,nbasis=NULL,seed=NULL,
domain=as.list(NULL),quad=NULL,
qdsz.depth=NULL,bias=NULL,
prec=1e-7,maxiter=30,skip.iter=FALSE)
{
## Obtain model frame and model terms
mf <- match.call()
mf$type <- mf$alpha <- NULL
mf$id.basis <- mf$nbasis <- mf$seed <- NULL
mf$domain <- mf$quad <- mf$qdsz.depth <- mf$bias <- NULL
mf$prec <- mf$maxiter <- mf$skip.iter <- NULL
mf[[1]] <- as.name("model.frame")
mf <- eval(mf,parent.frame())
cnt <- model.weights(mf)
mf$"(weights)" <- NULL
## Generate sub-basis
nobs <- dim(mf)[1]
if (is.null(id.basis)) {
if (is.null(nbasis)) nbasis <- max(30,ceiling(10*nobs^(2/9)))
if (nbasis>=nobs) nbasis <- nobs
if (!is.null(seed)) set.seed(seed)
id.basis <- sample(nobs,nbasis,prob=cnt)
}
else {
if (max(id.basis)>nobs|min(id.basis)<1)
stop("gss error in ssden: id.basis out of range")
nbasis <- length(id.basis)
}
## Set domain and/or generate quadrature
if (is.null(quad)) {
## Set domain and type
fac.list <- NULL
for (xlab in names(mf)) {
x <- mf[[xlab]]
if (is.factor(x)) {
fac.list <- c(fac.list,xlab)
domain[[xlab]] <- NULL
}
else {
if (!is.vector(x))
stop("gss error in ssden: no default quadrature")
if (is.null(domain[[xlab]])) {
mn <- min(x)
mx <- max(x)
domain[[xlab]] <- c(mn,mx)+c(-1,1)*(mx-mn)*.05
}
else domain[[xlab]] <- c(min(domain[[xlab]]),max(domain[[xlab]]))
if (is.null(type[[xlab]]))
type[[xlab]] <- list("cubic",domain[[xlab]])
else {
if (length(type[[xlab]])==1)
type[[xlab]] <- list(type[[xlab]][[1]],domain[[xlab]])
}
}
}
## Generate numerical quadrature
domain <- data.frame(domain)
mn <- domain[1,]
mx <- domain[2,]
dm <- ncol(domain)
if (dm==1) {
## Gauss-Legendre or uniform quadrature
xlab <- names(domain)
if (type[[xlab]][[1]]%in%c("per","cubic.per","linear.per")) {
quad <- list(pt=mn+(1:200)/200*(mx-mn),
wt=rep((mx-mn)/200,200))
}
else quad <- gauss.quad(200,c(mn,mx))
quad$pt <- data.frame(quad$pt)
colnames(quad$pt) <- colnames(domain)
}
else {
## Smolyak cubature
if (is.null(qdsz.depth)) qdsz.depth <- switch(min(dm,6)-1,18,14,12,11,10)
quad <- smolyak.quad(dm,qdsz.depth)
for (i in 1:ncol(domain)) {
xlab <- colnames(domain)[i]
form <- as.formula(paste("~",xlab))
jk <- ssden(form,data=mf,domain=domain[i],alpha=2,
id.basis=id.basis,weights=cnt)
quad$pt[,i] <- qssden(jk,quad$pt[,i])
quad$wt <- quad$wt/dssden(jk,quad$pt[,i])
}
jk <- NULL
quad$pt <- data.frame(quad$pt)
colnames(quad$pt) <- colnames(domain)
}
## Incorporate factors in quadrature
if (!is.null(fac.list)) {
for (i in 1:length(fac.list)) {
wk <-
expand.grid(levels(mf[[fac.list[i]]]),1:length(quad$wt))
quad$wt <- quad$wt[wk[,2]]
col.names <- c(fac.list[i],colnames(quad$pt))
quad$pt <- data.frame(wk[,1],quad$pt[wk[,2],])
colnames(quad$pt) <- col.names
}
}
quad <- list(pt=quad$pt,wt=quad$wt)
}
else {
for (xlab in names(mf)) {
x <- mf[[xlab]]
if (is.vector(x)&!is.factor(x)) {
if (is.null(range <- domain[[xlab]])) {
mn <- min(x)
mx <- max(x)
range <- c(mn,mx)+c(-1,1)*(mx-mn)*.05
range[1] <- min(c(range[1],quad$pt[[xlab]]))
range[2] <- max(c(range[2],quad$pt[[xlab]]))
}
if (is.null(type[[xlab]]))
type[[xlab]] <- list("cubic",range)
else {
if (length(type[[xlab]])==1)
type[[xlab]] <- list(type[[xlab]][[1]],range)
else {
mn0 <- min(type[[xlab]][[2]])
mx0 <- max(type[[xlab]][[2]])
if ((mn0>mn)|(mx0<mx))
stop("gss error in ssden: range not covering domain")
}
}
}
}
}
## Generate terms
term <- mkterm(mf,type)
term$labels <- term$labels[term$labels!="1"]
## sampling bias
qd.pt <- quad$pt
qd.wt <- quad$wt
nmesh <- length(qd.wt)
if (is.null(bias)) {
nt <- b.wt <- 1
t.wt <- matrix(1,nmesh,1)
bias0 <- list(nt=nt,wt=b.wt,qd.wt=t.wt)
}
else {
if ((nt <- length(bias$t))-length(bias$wt))
stop("gss error in ssden: bias$t and bias$wt mismatch in size")
b.wt <- abs(bias$wt)/sum(abs(bias$wt))
t.wt <- NULL
for (i in 1:nt) t.wt <- cbind(t.wt,bias$fun(bias$t[i],qd.pt))
bias0 <- list(nt=nt,wt=b.wt,qd.wt=t.wt)
}
## Generate s and r
s <- qd.s <- r <- qd.r <- NULL
nq <- 0
for (label in term$labels) {
x <- mf[,term[[label]]$vlist]
x.basis <- mf[id.basis,term[[label]]$vlist]
qd.x <- qd.pt[,term[[label]]$vlist]
nphi <- term[[label]]$nphi
nrk <- term[[label]]$nrk
if (nphi) {
phi <- term[[label]]$phi
for (i in 1:nphi) {
s <- cbind(s,phi$fun(x,nu=i,env=phi$env))
qd.s <- cbind(qd.s,phi$fun(qd.x,nu=i,env=phi$env))
}
}
if (nrk) {
rk <- term[[label]]$rk
for (i in 1:nrk) {
nq <- nq+1
r <- array(c(r,rk$fun(x.basis,x,nu=i,env=rk$env,out=TRUE)),c(nbasis,nobs,nq))
qd.r <- array(c(qd.r,rk$fun(x.basis,qd.x,nu=i,env=rk$env,out=TRUE)),
c(nbasis,nmesh,nq))
}
}
}
if (!is.null(s)) {
nnull <- dim(s)[2]
## Check s rank
if (qr(s)$rank<nnull)
stop("gss error in ssden: unpenalized terms are linearly dependent")
s <- t(s)
qd.s <- t(qd.s)
}
## Fit the model
if (nq==1) {
r <- r[,,1]
qd.r <- qd.r[,,1]
z <- sspdsty(s,r,r[,id.basis],cnt,qd.s,qd.r,qd.wt,prec,maxiter,alpha,bias0)
}
else z <- mspdsty(s,r,id.basis,cnt,qd.s,qd.r,qd.wt,prec,maxiter,alpha,bias0,skip.iter)
## Brief description of model terms
desc <- NULL
for (label in term$labels)
desc <- rbind(desc,as.numeric(c(term[[label]][c("nphi","nrk")])))
desc <- rbind(desc,apply(desc,2,sum))
rownames(desc) <- c(term$labels,"total")
colnames(desc) <- c("Unpenalized","Penalized")
## Return the results
obj <- c(list(call=match.call(),mf=mf,cnt=cnt,terms=term,desc=desc,
alpha=alpha,domain=domain,quad=quad,id.basis=id.basis,
qdsz.depth=qdsz.depth,bias=bias0,skip.iter=skip.iter),z)
class(obj) <- "ssden"
obj
}
## Fit single smoothing parameter density
sspdsty <- function(s,r,q,cnt,qd.s,qd.r,qd.wt,prec,maxiter,alpha,bias)
{
nxi <- dim(r)[1]
nobs <- dim(r)[2]
nqd <- length(qd.wt)
if (!is.null(s)) nnull <- dim(s)[1]
else nnull <- 0
nxis <- nxi+nnull
if (is.null(cnt)) cnt <- 0
## cv function
cv <- function(lambda) {
fit <- .Fortran("dnewton",
cd=as.double(cd), as.integer(nxis),
as.double(10^(lambda+theta)*q), as.integer(nxi),
as.double(rbind(10^theta*r,s)), as.integer(nobs),
as.integer(sum(cnt)), as.integer(cnt),
as.double(t(rbind(10^theta*qd.r,qd.s))), as.integer(nqd),
as.integer(bias$nt), as.double(bias$wt),
as.double(t(qd.wt*bias$qd.wt)),
as.double(prec), as.integer(maxiter),
as.double(.Machine$double.eps), integer(nxis),
wk=double(2*((nqd+1)*bias$nt+nobs)+nxis*(2*nxis+4)+max(nxis,3)),
info=integer(1),PACKAGE="gss")
if (fit$info==1) stop("gss error in ssden: Newton iteration diverges")
if (fit$info==2) warning("gss warning in ssden: Newton iteration fails to converge")
assign("cd",fit$cd,inherits=TRUE)
cv <- alpha*fit$wk[2]-fit$wk[1]
alpha.wk <- max(0,log.la0-lambda-5)*(3-alpha) + alpha
alpha.wk <- min(alpha.wk,3)
adj <- ifelse (alpha.wk>alpha,(alpha.wk-alpha)*fit$wk[2],0)
cv+adj
}
## initialization
mu.r <- apply(qd.wt*t(qd.r),2,sum)/sum(qd.wt)
v.r <- apply(qd.wt*t(qd.r^2),2,sum)/sum(qd.wt)
if (nnull) {
mu.s <- apply(qd.wt*t(qd.s),2,sum)/sum(qd.wt)
v.s <- apply(qd.wt*t(qd.s^2),2,sum)/sum(qd.wt)
}
if (is.null(s)) theta <- 0
else theta <- log10(sum(v.s-mu.s^2)/nnull/sum(v.r-mu.r^2)*nxi) / 2
log.la0 <- log10(sum(v.r-mu.r^2)/sum(diag(q))) + theta
## lambda search
cd <- rep(0,nxi+nnull)
la <- log.la0
mn0 <- log.la0-6
mx0 <- log.la0+6
repeat {
mn <- max(la-1,mn0)
mx <- min(la+1,mx0)
zz <- nlm0(cv,c(mn,mx))
if ((min(zz$est-mn,mx-zz$est)>=1e-1)||
(min(zz$est-mn0,mx0-zz$est)<1e-1)) break
else la <- zz$est
}
## return
jk1 <- cv(zz$est)
int <- sum(qd.wt*exp(t(rbind(10^theta*qd.r,qd.s))%*%cd))
c <- cd[1:nxi]
if (nnull) d <- cd[nxi+(1:nnull)]
else d <- NULL
list(lambda=zz$est,theta=theta,c=c,d=d,int=int,cv=jk1)
}
## Fit multiple smoothing parameter density
mspdsty <- function(s,r,id.basis,cnt,qd.s,qd.r,qd.wt,prec,maxiter,alpha,bias,skip.iter)
{
nxi <- dim(r)[1]
nobs <- dim(r)[2]
nqd <- length(qd.wt)
nq <- dim(r)[3]
if (!is.null(s)) nnull <- dim(s)[1]
else nnull <- 0
nxis <- nxi+nnull
if (is.null(cnt)) cnt <- 0
## cv function
cv <- function(theta) {
ind.wk <- theta!=theta.old
if (sum(ind.wk)==nq) {
r.wk0 <- qd.r.wk0 <- 0
for (i in 1:nq) {
r.wk0 <- r.wk0 + 10^theta[i]*r[,,i]
qd.r.wk0 <- qd.r.wk0 + 10^theta[i]*qd.r[,,i]
}
assign("r.wk",r.wk0+0,inherits=TRUE)
assign("qd.r.wk",qd.r.wk0+0,inherits=TRUE)
assign("theta.old",theta+0,inherits=TRUE)
}
else {
r.wk0 <- r.wk
qd.r.wk0 <- qd.r.wk
for (i in (1:nq)[ind.wk]) {
theta.wk <- (10^(theta[i]-theta.old[i])-1)*10^theta.old[i]
r.wk0 <- r.wk0 + theta.wk*r[,,i]
qd.r.wk0 <- qd.r.wk0 + theta.wk*qd.r[,,i]
}
}
q.wk <- r.wk0[,id.basis]
fit <- .Fortran("dnewton",
cd=as.double(cd), as.integer(nxis),
as.double(10^lambda*q.wk), as.integer(nxi),
as.double(rbind(r.wk0,s)), as.integer(nobs),
as.integer(sum(cnt)), as.integer(cnt),
as.double(t(rbind(qd.r.wk0,qd.s))), as.integer(nqd),
as.integer(bias$nt), as.double(bias$wt),
as.double(t(qd.wt*bias$qd.wt)),
as.double(prec), as.integer(maxiter),
as.double(.Machine$double.eps), integer(nxis),
wk=double(2*((nqd+1)*bias$nt+nobs)+nxis*(2*nxis+4)+max(nxis,3)),
info=integer(1),PACKAGE="gss")
if (fit$info==1) stop("gss error in ssden: Newton iteration diverges")
if (fit$info==2) warning("gss warning in ssden: Newton iteration fails to converge")
assign("cd",fit$cd,inherits=TRUE)
cv <- alpha*fit$wk[2]-fit$wk[1]
alpha.wk <- max(0,theta-log.th0-5)*(3-alpha) + alpha
alpha.wk <- min(alpha.wk,3)
adj <- ifelse (alpha.wk>alpha,(alpha.wk-alpha)*fit$wk[2],0)
cv+adj
}
cv.wk <- function(theta) cv.scale*cv(theta)+cv.shift
## initialization
theta <- -log10(apply(r[,id.basis,],3,function(x)sum(diag(x))))
r.wk <- qd.r.wk <- 0
for (i in 1:nq) {
r.wk <- r.wk + 10^theta[i]*r[,,i]
qd.r.wk <- qd.r.wk + 10^theta[i]*qd.r[,,i]
}
## theta adjustment
z <- sspdsty(s,r.wk,r.wk[,id.basis],cnt,qd.s,qd.r.wk,qd.wt,prec,maxiter,alpha,bias)
theta <- theta + z$theta
r.wk <- qd.r.wk <- 0
for (i in 1:nq) {
theta[i] <- 2*theta[i] + log10(t(z$c)%*%r[,id.basis,i]%*%z$c)
r.wk <- r.wk + 10^theta[i]*r[,,i]
qd.r.wk <- qd.r.wk + 10^theta[i]*qd.r[,,i]
}
mu <- apply(qd.wt*t(qd.r.wk),2,sum)/sum(qd.wt)
v <- apply(qd.wt*t(qd.r.wk^2),2,sum)/sum(qd.wt)
log.la0 <- log10(sum(v-mu^2)/sum(diag(r.wk[,id.basis])))
log.th0 <- theta-log.la0
## lambda search
z <- sspdsty(s,r.wk,r.wk[,id.basis],cnt,qd.s,qd.r.wk,qd.wt,prec,maxiter,alpha,bias)
lambda <- z$lambda
log.th0 <- log.th0 + z$lambda
theta <- theta + z$theta
cd <- c(z$c,z$d)
int <- z$int
## early return
if (skip.iter) {
z$theta <- theta
return(z)
}
## theta search
counter <- 0
r.wk <- qd.r.wk <- 0
for (i in 1:nq) {
r.wk <- r.wk + 10^theta[i]*r[,,i]
qd.r.wk <- qd.r.wk + 10^theta[i]*qd.r[,,i]
}
theta.old <- theta
## scale and shift cv
tmp <- abs(cv(theta))
cv.scale <- 1
cv.shift <- 0
if (tmp<1&tmp>10^(-4)) {
cv.scale <- 10/tmp
cv.shift <- 0
}
if (tmp<10^(-4)) {
cv.scale <- 10^2
cv.shift <- 10
}
repeat {
zz <- nlm(cv.wk,theta,stepmax=1,ndigit=7)
if (zz$code<=3) break
theta <- zz$est
counter <- counter + 1
if (counter>=5) {
warning("gss warning in ssden: CV iteration fails to converge")
break
}
}
## return
jk1 <- cv(zz$est)
qd.r.wk <- 0
for (i in 1:nq) qd.r.wk <- qd.r.wk + 10^zz$est[i]*qd.r[,,i]
int <- sum(qd.wt*exp(t(rbind(qd.r.wk,qd.s))%*%cd))
c <- cd[1:nxi]
if (nnull) d <- cd[nxi+(1:nnull)]
else d <- NULL
list(lambda=lambda,theta=zz$est,c=c,d=d,int=int,cv=jk1)
}
|