1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
\name{gssanova}
\alias{gssanova}
\title{Fitting Smoothing Spline ANOVA Models with Non-Gaussian Responses}
\description{
Fit smoothing spline ANOVA models in non-Gaussian regression. The
symbolic model specification via \code{formula} follows the same
rules as in \code{\link{lm}} and \code{\link{glm}}.
}
\usage{
gssanova(formula, family, type=NULL, data=list(), weights, subset,
offset, na.action=na.omit, partial=NULL, alpha=NULL, nu=NULL,
id.basis=NULL, nbasis=NULL, seed=NULL, random=NULL,
skip.iter=FALSE)
}
\arguments{
\item{formula}{Symbolic description of the model to be fit.}
\item{family}{Description of the error distribution. Supported
are exponential families \code{"binomial"}, \code{"poisson"},
\code{"Gamma"}, \code{"inverse.gaussian"}, and
\code{"nbinomial"}. Also supported are accelerated life model
families \code{"weibull"}, \code{"lognorm"}, and
\code{"loglogis"}.}
\item{type}{List specifying the type of spline for each variable.
See \code{\link{mkterm}} for details.}
\item{data}{Optional data frame containing the variables in the
model.}
\item{weights}{Optional vector of weights to be used in the
fitting process.}
\item{subset}{Optional vector specifying a subset of observations
to be used in the fitting process.}
\item{offset}{Optional offset term with known parameter 1.}
\item{na.action}{Function which indicates what should happen when
the data contain NAs.}
\item{partial}{Optional symbolic description of parametric terms in
partial spline models.}
\item{alpha}{Tuning parameter defining cross-validation; larger
values yield smoother fits. Defaults are \code{alpha=1} for
\code{family="binomial"} and \code{alpha=1.4} otherwise.}
\item{nu}{Inverse scale parameter in accelerated life model
families. Ignored for exponential families.}
\item{id.basis}{Index designating selected "knots".}
\item{nbasis}{Number of "knots" to be selected. Ignored when
\code{id.basis} is supplied.}
\item{seed}{Seed for reproducible random selection of "knots".
Ignored when \code{id.basis} is supplied.}
\item{random}{Input for parametric random effects in nonparametric
mixed-effect models. See \code{\link{mkran}} for details.}
\item{skip.iter}{Flag indicating whether to use initial values of
theta and skip theta iteration. See \code{\link{ssanova}} for
notes on skipping theta iteration.}
}
\details{
The model specification via \code{formula} is intuitive. For
example, \code{y~x1*x2} yields a model of the form
\deqn{
y = C + f_{1}(x1) + f_{2}(x2) + f_{12}(x1,x2) + e
}
with the terms denoted by \code{"1"}, \code{"x1"}, \code{"x2"}, and
\code{"x1:x2"}.
The model terms are sums of unpenalized and penalized
terms. Attached to every penalized term there is a smoothing
parameter, and the model complexity is largely determined by the
number of smoothing parameters.
Only one link is implemented for each \code{family}. It is the
logit link for \code{"binomial"}, and the log link for
\code{"poisson"}, and \code{"Gamma"}. For \code{"nbinomial"}, the
working parameter is the logit of the probability \eqn{p}; see
\code{\link{NegBinomial}}. For \code{"weibull"}, \code{"lognorm"},
and \code{"loglogis"}, it is the location parameter for the log
lifetime.
The selection of smoothing parameters is through direct
cross-validation. The cross-validation score used for
\code{family="poisson"} is taken from density estimation as in Gu
and Wang (2003), and those used for other families are derived
following the lines of Gu and Xiang (2001).
A subset of the observations are selected as "knots." Unless
specified via \code{id.basis} or \code{nbasis}, the number of
"knots" \eqn{q} is determined by \eqn{max(30,10n^{2/9})}, which is
appropriate for the default cubic splines for numerical vectors.
}
\section{Responses}{
For \code{family="binomial"}, the response can be specified either
as two columns of counts or as a column of sample proportions plus a
column of total counts entered through the argument \code{weights},
as in \code{\link{glm}}.
For \code{family="nbinomial"}, the response may be specified as two
columns with the second being the known sizes, or simply as a single
column with the common unknown size to be estimated through the
maximum likelihood.
For \code{family="weibull"}, \code{"lognorm"}, or \code{"loglogis"},
the response consists of three columns, with the first giving the
follow-up time, the second the censoring status, and the third the
left-truncation time. For data with no truncation, the third column
can be omitted.
}
\note{
For simpler models and moderate sample sizes, the exact solution of
\code{\link{gssanova0}} can be faster.
The results may vary from run to run. For consistency, specify
\code{id.basis} or set \code{seed}.
In \emph{gss} versions earlier than 1.0, \code{gssanova} was under
the name \code{gssanova1}.
}
\value{
\code{gssanova} returns a list object of class
\code{c("gssanova","ssanova")}.
The method \code{\link{summary.gssanova}} can be used to obtain
summaries of the fits. The method \code{\link{predict.ssanova}} can
be used to evaluate the fits at arbitrary points along with standard
errors, on the link scale. The method
\code{\link{project.gssanova}} can be used to calculate the
Kullback-Leibler projection for model selection. The methods
\code{\link{residuals.gssanova}} and \code{\link{fitted.gssanova}}
extract the respective traits from the fits.
}
\author{Chong Gu, \email{chong@stat.purdue.edu}}
\references{
Gu, C. and Xiang, D. (2001), Cross validating non Gaussian data:
generalized approximate cross validation revisited. \emph{Journal
of Computational and Graphical Statistics}, \bold{10}, 581--591.
Gu, C. and Wang, J. (2003), Penalized likelihood density
estimation: Direct cross-validation and scalable approximation.
\emph{Statistica Sinica}, \bold{13}, 811--826.
Gu, C. (2013), \emph{Smoothing Spline ANOVA Models (2nd Ed)}. New
York: Springer-Verlag.
Chong Gu (2014), Smoothing Spline ANOVA Models: R Package gss.
\emph{Journal of Statistical Software}, 58(5), 1-25. URL
http://www.jstatsoft.org/v58/i05/.
}
\examples{
## Fit a cubic smoothing spline logistic regression model
test <- function(x)
{.3*(1e6*(x^11*(1-x)^6)+1e4*(x^3*(1-x)^10))-2}
x <- (0:100)/100
p <- 1-1/(1+exp(test(x)))
y <- rbinom(x,3,p)
logit.fit <- gssanova(cbind(y,3-y)~x,family="binomial")
## The same fit
logit.fit1 <- gssanova(y/3~x,"binomial",weights=rep(3,101),
id.basis=logit.fit$id.basis)
## Obtain estimates and standard errors on a grid
est <- predict(logit.fit,data.frame(x=x),se=TRUE)
## Plot the fit and the Bayesian confidence intervals
plot(x,y/3,ylab="p")
lines(x,p,col=1)
lines(x,1-1/(1+exp(est$fit)),col=2)
lines(x,1-1/(1+exp(est$fit+1.96*est$se)),col=3)
lines(x,1-1/(1+exp(est$fit-1.96*est$se)),col=3)
## Fit a mixed-effect logistic model
data(bacteriuria)
bact.fit <- gssanova(infect~trt+time,family="binomial",data=bacteriuria,
id.basis=(1:820)[bacteriuria$id\%in\%c(3,38)],random=~1|id)
## Predict fixed effects
predict(bact.fit,data.frame(time=2:16,trt=as.factor(rep(1,15))),se=TRUE)
## Estimated random effects
bact.fit$b
## Clean up
\dontrun{rm(test,x,p,y,logit.fit,logit.fit1,est,bacteriuria,bact.fit)
dev.off()}
}
\keyword{models}
\keyword{regression}
\keyword{smooth}
|