File: gssanova.Rd

package info (click to toggle)
r-cran-gss 2.1-3-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 1,740 kB
  • ctags: 1,400
  • sloc: fortran: 5,241; ansic: 1,388; makefile: 1
file content (177 lines) | stat: -rw-r--r-- 7,696 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
\name{gssanova}
\alias{gssanova}
\title{Fitting Smoothing Spline ANOVA Models with Non-Gaussian Responses}
\description{
    Fit smoothing spline ANOVA models in non-Gaussian regression.  The
    symbolic model specification via \code{formula} follows the same
    rules as in \code{\link{lm}} and \code{\link{glm}}.
}
\usage{
gssanova(formula, family, type=NULL, data=list(), weights, subset,
         offset, na.action=na.omit, partial=NULL, alpha=NULL, nu=NULL,
         id.basis=NULL, nbasis=NULL, seed=NULL, random=NULL,
         skip.iter=FALSE)
}
\arguments{
    \item{formula}{Symbolic description of the model to be fit.}
    \item{family}{Description of the error distribution.  Supported
	are exponential families \code{"binomial"}, \code{"poisson"},
	\code{"Gamma"}, \code{"inverse.gaussian"}, and
	\code{"nbinomial"}.  Also supported are accelerated life model
	families \code{"weibull"}, \code{"lognorm"}, and
	\code{"loglogis"}.}
    \item{type}{List specifying the type of spline for each variable.
        See \code{\link{mkterm}} for details.}
    \item{data}{Optional data frame containing the variables in the
	model.}
    \item{weights}{Optional vector of weights to be used in the
	fitting process.}
    \item{subset}{Optional vector specifying a subset of observations
	to be used in the fitting process.}
    \item{offset}{Optional offset term with known parameter 1.}
    \item{na.action}{Function which indicates what should happen when
	the data contain NAs.}
    \item{partial}{Optional symbolic description of parametric terms in
        partial spline models.}
    \item{alpha}{Tuning parameter defining cross-validation; larger
        values yield smoother fits.  Defaults are \code{alpha=1} for
	\code{family="binomial"} and \code{alpha=1.4} otherwise.}
    \item{nu}{Inverse scale parameter in accelerated life model
        families.  Ignored for exponential families.}
    \item{id.basis}{Index designating selected "knots".}
    \item{nbasis}{Number of "knots" to be selected.  Ignored when
	\code{id.basis} is supplied.}
    \item{seed}{Seed for reproducible random selection of "knots".
	Ignored when \code{id.basis} is supplied.}
    \item{random}{Input for parametric random effects in nonparametric
        mixed-effect models.  See \code{\link{mkran}} for details.}
    \item{skip.iter}{Flag indicating whether to use initial values of
        theta and skip theta iteration.  See \code{\link{ssanova}} for
	notes on skipping theta iteration.}
}
\details{
    The model specification via \code{formula} is intuitive.  For
    example, \code{y~x1*x2} yields a model of the form
    \deqn{
	y = C + f_{1}(x1) + f_{2}(x2) + f_{12}(x1,x2) + e
    }
    with the terms denoted by \code{"1"}, \code{"x1"}, \code{"x2"}, and
    \code{"x1:x2"}.

    The model terms are sums of unpenalized and penalized
    terms. Attached to every penalized term there is a smoothing
    parameter, and the model complexity is largely determined by the
    number of smoothing parameters.

    Only one link is implemented for each \code{family}.  It is the
    logit link for \code{"binomial"}, and the log link for
    \code{"poisson"}, and \code{"Gamma"}.  For \code{"nbinomial"}, the
    working parameter is the logit of the probability \eqn{p}; see
    \code{\link{NegBinomial}}.  For \code{"weibull"}, \code{"lognorm"},
    and \code{"loglogis"}, it is the location parameter for the log
    lifetime.

    The selection of smoothing parameters is through direct
    cross-validation.  The cross-validation score used for
    \code{family="poisson"} is taken from density estimation as in Gu
    and Wang (2003), and those used for other families are derived
    following the lines of Gu and Xiang (2001).

    A subset of the observations are selected as "knots."  Unless
    specified via \code{id.basis} or \code{nbasis}, the number of
    "knots" \eqn{q} is determined by \eqn{max(30,10n^{2/9})}, which is
    appropriate for the default cubic splines for numerical vectors.
}
\section{Responses}{
    For \code{family="binomial"}, the response can be specified either
    as two columns of counts or as a column of sample proportions plus a
    column of total counts entered through the argument \code{weights},
    as in \code{\link{glm}}.

    For \code{family="nbinomial"}, the response may be specified as two
    columns with the second being the known sizes, or simply as a single
    column with the common unknown size to be estimated through the
    maximum likelihood.

    For \code{family="weibull"}, \code{"lognorm"}, or \code{"loglogis"},
    the response consists of three columns, with the first giving the
    follow-up time, the second the censoring status, and the third the
    left-truncation time.  For data with no truncation, the third column
    can be omitted.
}
\note{
    For simpler models and moderate sample sizes, the exact solution of
    \code{\link{gssanova0}} can be faster.

    The results may vary from run to run. For consistency, specify
    \code{id.basis} or set \code{seed}.

    In \emph{gss} versions earlier than 1.0, \code{gssanova} was under
    the name \code{gssanova1}.
}
\value{
    \code{gssanova} returns a list object of class
    \code{c("gssanova","ssanova")}.

    The method \code{\link{summary.gssanova}} can be used to obtain
    summaries of the fits.  The method \code{\link{predict.ssanova}} can
    be used to evaluate the fits at arbitrary points along with standard
    errors, on the link scale.  The method
    \code{\link{project.gssanova}} can be used to calculate the
    Kullback-Leibler projection for model selection.  The methods
    \code{\link{residuals.gssanova}} and \code{\link{fitted.gssanova}}
    extract the respective traits from the fits.
}
\author{Chong Gu, \email{chong@stat.purdue.edu}}
\references{
    Gu, C. and Xiang, D. (2001), Cross validating non Gaussian data:
    generalized approximate cross validation revisited.  \emph{Journal
    of Computational and Graphical Statistics}, \bold{10}, 581--591.

    Gu, C. and Wang, J. (2003), Penalized likelihood density
    estimation: Direct cross-validation and scalable approximation.
    \emph{Statistica Sinica}, \bold{13}, 811--826.

    Gu, C. (2013), \emph{Smoothing Spline ANOVA Models (2nd Ed)}.  New
    York: Springer-Verlag.

    Chong Gu (2014), Smoothing Spline ANOVA Models: R Package gss.
    \emph{Journal of Statistical Software}, 58(5), 1-25. URL
    http://www.jstatsoft.org/v58/i05/.
}
\examples{
## Fit a cubic smoothing spline logistic regression model
test <- function(x)
        {.3*(1e6*(x^11*(1-x)^6)+1e4*(x^3*(1-x)^10))-2}
x <- (0:100)/100
p <- 1-1/(1+exp(test(x)))
y <- rbinom(x,3,p)
logit.fit <- gssanova(cbind(y,3-y)~x,family="binomial")
## The same fit
logit.fit1 <- gssanova(y/3~x,"binomial",weights=rep(3,101),
                       id.basis=logit.fit$id.basis)
## Obtain estimates and standard errors on a grid
est <- predict(logit.fit,data.frame(x=x),se=TRUE)
## Plot the fit and the Bayesian confidence intervals
plot(x,y/3,ylab="p")
lines(x,p,col=1)
lines(x,1-1/(1+exp(est$fit)),col=2)
lines(x,1-1/(1+exp(est$fit+1.96*est$se)),col=3)
lines(x,1-1/(1+exp(est$fit-1.96*est$se)),col=3)

## Fit a mixed-effect logistic model
data(bacteriuria)
bact.fit <- gssanova(infect~trt+time,family="binomial",data=bacteriuria,
                     id.basis=(1:820)[bacteriuria$id\%in\%c(3,38)],random=~1|id)
## Predict fixed effects
predict(bact.fit,data.frame(time=2:16,trt=as.factor(rep(1,15))),se=TRUE)
## Estimated random effects
bact.fit$b

## Clean up
\dontrun{rm(test,x,p,y,logit.fit,logit.fit1,est,bacteriuria,bact.fit)
dev.off()}
}
\keyword{models}
\keyword{regression}
\keyword{smooth}