1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
|
\name{mkfun.poly}
\alias{mkfun.poly}
\alias{mkrk.cubic}
\alias{mkphi.cubic}
\alias{mkrk.cubic.per}
\alias{mkrk.linear}
\alias{mkrk.linear.per}
\alias{mkrk.trig}
\alias{mkphi.trig}
\title{
Crafting Building Blocks for Polynomial Splines
}
\description{
Craft numerical functions to be used by \code{\link{mkterm}} to
assemble model terms.
}
\usage{
mkrk.cubic(range)
mkphi.cubic(range)
mkrk.trig(range)
mkphi.trig(range)
mkrk.cubic.per(range)
mkrk.linear(range)
mkrk.linear.per(range)
}
\arguments{
\item{range}{Numerical vector whose minimum and maximum specify the
range on which the function to be crafted is defined.}
}
\value{
A list of two components.
\item{fun}{Function definition.}
\item{env}{Portable local constants derived from the argument.}
}
\note{
\code{mkrk.x} create a bivariate function
\code{fun(x,y,env,outer=FALSE)}, where \code{x}, \code{y} are real
arguments and local constants can be passed in through \code{env}.
\code{mkphi.cubic} creates a univariate function
\code{fun(x,nu,env)}.
}
\seealso{
\code{\link{mkterm}}, \code{\link{mkfun.tp}}, and
\code{\link{mkrk.nominal}}.
}
\details{
\code{mkrk.cubic}, \code{mkphi.cubic}, and \code{mkrk.linear}
implement the polynomial spline construction in Gu (2002,
Sec. 2.3.3) for \eqn{m=2,1}.
\code{mkrk.cubic.per} and \code{mkrk.linear.per} implement the
periodic polynomial spline construction in Gu (2002, Sec. 4.2.1) for
\eqn{m=2,1}.
}
\author{Chong Gu, \email{chong@stat.purdue.edu}}
\references{
Gu, C. (2013), \emph{Smoothing Spline ANOVA Models (2nd Ed)}. New
York: Springer-Verlag.
}
\keyword{internal}
|