1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
\name{mkfun.tp}
\alias{mkfun.tp}
\alias{mkrk.tp}
\alias{mkrk.tp.p}
\alias{mkphi.tp}
\alias{mkphi.tp.p}
\alias{mkrk.sphere}
\title{
Crafting Building Blocks for Thin-Plate and Spherical Splines
}
\description{
Craft numerical functions to be used by \code{\link{mkterm}} to
assemble model terms.
}
\usage{
mkrk.tp(dm, order, mesh, weight)
mkphi.tp(dm, order, mesh, weight)
mkrk.tp.p(dm, order)
mkphi.tp.p(dm, order)
mkrk.sphere(order)
}
\arguments{
\item{dm}{Dimension of the variable \eqn{d}.}
\item{order}{Order of the differential operator \eqn{m}.}
\item{mesh}{Normalizing mesh.}
\item{weight}{Normalizing weights.}
}
\details{
\code{mkrk.tp}, \code{mkphi.tp}, \code{mkrk.tp.p}, and
\code{mkphi.tp.p} implement the construction in Gu (2002,
Sec. 4.4). Thin-plate splines are defined for \eqn{2m>d}.
\code{mkrk.tp.p} generates the pseudo kernel, and \code{mkphi.tp.p}
generates the \eqn{(m+d-1)!/d!/(m-1)!} lower order polynomials with
total order less than \eqn{m}.
\code{mkphi.tp} generates normalized lower order polynomials
orthonormal w.r.t. a norm specified by \code{mesh} and
\code{weight}, and \code{mkrk.tp} conditions the pseudo kernel to
generate the reproducing kernel orthogonal to the lower order
polynomials w.r.t. the norm.
\code{mkrk.sphere} implements the reproducing kernel construction of
Wahba (1981) for \eqn{m=2,3,4}.
}
\value{
A list of two components.
\item{fun}{Function definition.}
\item{env}{Portable local constants derived from the arguments.}
}
\note{
\code{mkrk.tp} and \code{mkrk.sphere} create a bivariate function
\code{fun(x,y,env,outer=FALSE)}, where \code{x}, \code{y} are real
arguments and local constants can be passed in through \code{env}.
\code{mkphi.tp} creates a collection of univariate functions
\code{fun(x,nu,env)}, where \code{x} is the argument and \code{nu}
is the index.
}
\author{Chong Gu, \email{chong@stat.purdue.edu}}
\references{
Gu, C. (2013), \emph{Smoothing Spline ANOVA Models (2nd Ed)}. New
York: Springer-Verlag.
Wahba, G. (1981), Spline interpolation and smoothing on the sphere.
\emph{SIAM Journal on Scientific and Statistical Computing},
\bold{2}, 5--16.
}
\seealso{
\code{\link{mkterm}}, \code{\link{mkfun.poly}}, and
\code{\link{mkrk.nominal}}.
}
\keyword{internal}
|