1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
\name{ssanova}
\alias{ssanova}
\title{Fitting Smoothing Spline ANOVA Models}
\description{
Fit smoothing spline ANOVA models in Gaussian regression. The
symbolic model specification via \code{formula} follows the same
rules as in \code{\link{lm}}.
}
\usage{
ssanova(formula, type=NULL, data=list(), weights, subset, offset,
na.action=na.omit, partial=NULL, method="v", alpha=1.4,
varht=1, id.basis=NULL, nbasis=NULL, seed=NULL, random=NULL,
skip.iter=FALSE)
}
\arguments{
\item{formula}{Symbolic description of the model to be fit.}
\item{type}{List specifying the type of spline for each variable.
See \code{\link{mkterm}} for details.}
\item{data}{Optional data frame containing the variables in the
model.}
\item{weights}{Optional vector of weights to be used in the
fitting process.}
\item{subset}{Optional vector specifying a subset of observations
to be used in the fitting process.}
\item{offset}{Optional offset term with known parameter 1.}
\item{na.action}{Function which indicates what should happen when
the data contain NAs.}
\item{partial}{Optional symbolic description of parametric terms in
partial spline models.}
\item{method}{Method for smoothing parameter selection. Supported
are \code{method="v"} for GCV, \code{method="m"} for GML (REML),
and \code{method="u"} for Mallows' CL.}
\item{alpha}{Parameter modifying GCV or Mallows' CL; larger absolute
values yield smoother fits; negative value invokes a stable and
more accurate GCV/CL evaluation algorithm but may take two to
five times as long. Ignored when \code{method="m"} are
specified.}
\item{varht}{External variance estimate needed for
\code{method="u"}. Ignored when \code{method="v"} or
\code{method="m"} are specified.}
\item{id.basis}{Index designating selected "knots".}
\item{nbasis}{Number of "knots" to be selected. Ignored when
\code{id.basis} is supplied.}
\item{seed}{Seed to be used for the random generation of "knots".
Ignored when \code{id.basis} is supplied.}
\item{random}{Input for parametric random effects in nonparametric
mixed-effect models. See \code{\link{mkran}} for details.}
\item{skip.iter}{Flag indicating whether to use initial values of
theta and skip theta iteration. See notes on skipping theta
iteration.}
}
\details{
The model specification via \code{formula} is intuitive. For
example, \code{y~x1*x2} yields a model of the form
\deqn{
y = C + f_{1}(x1) + f_{2}(x2) + f_{12}(x1,x2) + e
}
with the terms denoted by \code{"1"}, \code{"x1"}, \code{"x2"}, and
\code{"x1:x2"}.
The model terms are sums of unpenalized and penalized
terms. Attached to every penalized term there is a smoothing
parameter, and the model complexity is largely determined by the
number of smoothing parameters.
A subset of the observations are selected as "knots." Unless
specified via \code{id.basis} or \code{nbasis}, the number of
"knots" \eqn{q} is determined by \eqn{max(30,10n^{2/9})}, which is
appropriate for the default cubic splines for numerical vectors.
Using \eqn{q} "knots," \code{ssanova} calculates an approximate
solution to the penalized least squares problem using algorithms of
the order \eqn{O(nq^{2})}, which for \eqn{q<<n} scale better than
the \eqn{O(n^{3})} algorithms of \code{\link{ssanova0}}. For the
exact solution, one may set \eqn{q=n} in \code{ssanova}, but
\code{\link{ssanova0}} would be much faster.
}
\section{Skipping Theta Iteration}{
For the selection of multiple smoothing parameters,
\code{\link{nlm}} is used to minimize the selection criterion such
as the GCV score. When the number of smoothing parameters is large,
the process can be time-consuming due to the great amount of
function evaluations involved.
The starting values for the \code{nlm} iteration are obtained using
Algorith 3.2 in Gu and Wahba (1991). These starting values usually
yield good estimates themselves, leaving the subsequent quasi-Newton
iteration to pick up the "last 10\%" performance with extra effort
many times of the initial one. Thus, it is often a good idea to
skip the iteration by specifying \code{skip.iter=TRUE}, especially
in high-dimensions and/or with multi-way interactions.
\code{skip.iter=TRUE} could be made the default in future releases.
}
\note{
To use GCV and Mallows' CL unmodified, set \code{alpha=1}.
For simpler models and moderate sample sizes, the exact solution of
\code{\link{ssanova0}} can be faster.
The results may vary from run to run. For consistency, specify
\code{id.basis} or set \code{seed}.
In \emph{gss} versions earlier than 1.0, \code{ssanova} was under
the name \code{ssanova1}.
}
\value{
\code{ssanova} returns a list object of class \code{"ssanova"}.
The method \code{\link{summary.ssanova}} can be used to obtain
summaries of the fits. The method \code{\link{predict.ssanova}} can
be used to evaluate the fits at arbitrary points along with standard
errors. The method \code{\link{project.ssanova}} can be used to
calculate the Kullback-Leibler projection for model selection. The
methods \code{\link{residuals.ssanova}} and
\code{\link{fitted.ssanova}} extract the respective traits
from the fits.
}
\author{Chong Gu, \email{chong@stat.purdue.edu}}
\references{
Wahba, G. (1990), \emph{Spline Models for Observational Data}.
Philadelphia: SIAM.
Gu, C. and Wahba, G. (1991), Minimizing GCV/GML scores with multiple
smoothing parameters via the Newton method. \emph{SIAM Journal on
Scientific and Statistical Computing}, \bold{12}, 383--398.
Kim, Y.-J. and Gu, C. (2004), Smoothing spline Gaussian regression:
more scalable computation via efficient approximation.
\emph{Journal of the Royal Statistical Society, Ser. B}, \bold{66},
337--356.
Gu, C. (2013), \emph{Smoothing Spline ANOVA Models (2nd Ed)}. New
York: Springer-Verlag.
Chong Gu (2014), Smoothing Spline ANOVA Models: R Package gss.
\emph{Journal of Statistical Software}, 58(5), 1-25. URL
http://www.jstatsoft.org/v58/i05/.
}
\examples{
## Fit a cubic spline
x <- runif(100); y <- 5 + 3*sin(2*pi*x) + rnorm(x)
cubic.fit <- ssanova(y~x)
## Obtain estimates and standard errors on a grid
new <- data.frame(x=seq(min(x),max(x),len=50))
est <- predict(cubic.fit,new,se=TRUE)
## Plot the fit and the Bayesian confidence intervals
plot(x,y,col=1); lines(new$x,est$fit,col=2)
lines(new$x,est$fit+1.96*est$se,col=3)
lines(new$x,est$fit-1.96*est$se,col=3)
## Clean up
\dontrun{rm(x,y,cubic.fit,new,est)
dev.off()}
## Fit a tensor product cubic spline
data(nox)
nox.fit <- ssanova(log10(nox)~comp*equi,data=nox)
## Fit a spline with cubic and nominal marginals
nox$comp<-as.factor(nox$comp)
nox.fit.n <- ssanova(log10(nox)~comp*equi,data=nox)
## Fit a spline with cubic and ordinal marginals
nox$comp<-as.ordered(nox$comp)
nox.fit.o <- ssanova(log10(nox)~comp*equi,data=nox)
## Clean up
\dontrun{rm(nox,nox.fit,nox.fit.n,nox.fit.o)}
}
\keyword{smooth}
\keyword{models}
\keyword{regression}
|