1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
\name{ssllrm}
\alias{ssllrm}
\title{Fitting Smoothing Spline Log-Linear Regression Models}
\description{
Fit smoothing spline log-linear regression models. The symbolic
model specification via \code{formula} follows the same rules as in
\code{\link{lm}}.
}
\usage{
ssllrm(formula, response, type=NULL, data=list(), weights, subset,
na.action=na.omit, alpha=1, id.basis=NULL, nbasis=NULL,
seed=NULL, random=NULL, prec=1e-7, maxiter=30, skip.iter=FALSE)
}
\arguments{
\item{formula}{Symbolic description of the model to be fit.}
\item{response}{Formula listing response variables.}
\item{type}{List specifying the type of spline for each variable.
See \code{\link{mkterm}} for details.}
\item{data}{Optional data frame containing the variables in the
model.}
\item{weights}{Optional vector of weights to be used in the
fitting process.}
\item{subset}{Optional vector specifying a subset of observations
to be used in the fitting process.}
\item{na.action}{Function which indicates what should happen when
the data contain NAs.}
\item{alpha}{Parameter modifying GCV or Mallows' CL; larger absolute
values yield smoother fits; negative value invokes a stable and
more accurate GCV/CL evaluation algorithm but may take two to
five times as long. Ignored when \code{method="m"} are
specified.}
\item{id.basis}{Index designating selected "knots".}
\item{nbasis}{Number of "knots" to be selected. Ignored when
\code{id.basis} is supplied.}
\item{seed}{Seed to be used for the random generation of "knots".
Ignored when \code{id.basis} is supplied.}
\item{random}{Input for parametric random effects in nonparametric
mixed-effect models. See \code{\link{mkran}} for details.}
\item{prec}{Precision requirement for internal iterations.}
\item{maxiter}{Maximum number of iterations allowed for
internal iterations.}
\item{skip.iter}{Flag indicating whether to use initial values of
theta and skip theta iteration. See \code{\link{ssanova}} for
notes on skipping theta iteration.}
}
\details{
The model is specified via \code{formula} and \code{response}, where
\code{response} lists the response variables. For example,
\code{ssllrm(~y1*y2*x,~y1+y2)} prescribe a model of the form
\deqn{
log f(y1,y2|x) = g_{1}(y1) + g_{2}(y2) + g_{12}(y1,y2)
+ g_{x1}(x,y1) + g_{x2}(x,y2) + g_{x12}(x,y1,y2) + C(x)
}
with the terms denoted by \code{"y1"}, \code{"y2"}, \code{"y1:y2"},
\code{"y1:x"}, \code{"y2:x"}, and \code{"y1:y2:x"}; the term(s) not
involving response(s) are removed and the constant \code{C(x)} is
determined by the fact that a conditional density integrates (adds)
to one on the \code{y} axis.
The model terms are sums of unpenalized and penalized
terms. Attached to every penalized term there is a smoothing
parameter, and the model complexity is largely determined by the
number of smoothing parameters.
A subset of the observations are selected as "knots." Unless
specified via \code{id.basis} or \code{nbasis}, the number of
"knots" \eqn{q} is determined by \eqn{max(30,10n^{2/9})}, which is
appropriate for the default cubic splines for numerical vectors.
}
\note{
The responses, or y-variables, must be factors, and there must be at
least one numerical x's. For \code{response}, there is no difference
between \code{~y1+y2} and \code{~y1*y2}.
The results may vary from run to run. For consistency, specify
\code{id.basis} or set \code{seed}.
}
\value{
\code{ssllrm} returns a list object of class \code{"ssllrm"}.
The method \code{\link{predict.ssllrm}} can be used to evaluate
\code{f(y|x)} at arbitrary x, or contrasts of \code{log{f(y|x)}}
such as the odds ratio along with standard errors. The method
\code{\link{project.ssllrm}} can be used to calculate the
Kullback-Leibler projection for model selection.
}
\author{Chong Gu, \email{chong@stat.purdue.edu}}
\references{
Gu, C. and Ma, P. (2011), Nonparametric regression with
cross-classified responses. \emph{The Canadian Journal of
Statistics}, \bold{39}, 591--609.
Chong Gu (2014), Smoothing Spline ANOVA Models: R Package gss.
\emph{Journal of Statistical Software}, 58(5), 1-25. URL
http://www.jstatsoft.org/v58/i05/.
}
\examples{
## Simulate data
test <- function(x)
{.3*(1e6*(x^11*(1-x)^6)+1e4*(x^3*(1-x)^10))-2}
x <- (0:100)/100
p <- 1-1/(1+exp(test(x)))
y <- rbinom(x,3,p)
y1 <- as.ordered(y)
y2 <- as.factor(rbinom(x,1,p))
## Fit model
fit <- ssllrm(~y1*y2*x,~y1+y2)
## Evaluate f(y|x)
est <- predict(fit,data.frame(x=x),
data.frame(y1=as.factor(0:3),y2=as.factor(rep(0,4))))
## f(y|x) at all y values (fit$qd.pt)
est <- predict(fit,data.frame(x=x))
## Evaluate contrast of log f(y|x)
est <- predict(fit,data.frame(x=x),odds=c(-1,.5,.5,0),
data.frame(y1=as.factor(0:3),y2=as.factor(rep(0,4))),se=TRUE)
## Odds ratio log{f(0,0|x)/f(3,0|x)}
est <- predict(fit,data.frame(x=x),odds=c(1,-1),
data.frame(y1=as.factor(c(0,3)),y2=as.factor(c(0,1))),se=TRUE)
## KL projection
kl <- project(fit,include=c("y2:x","y1:y2","y1:x","y2:x"))
## Clean up
\dontrun{rm(test,x,p,y,y1,y2,fit,est,kl)
dev.off()}
}
\keyword{smooth}
\keyword{models}
\keyword{regression}
|