File: blueprint-formula-default.R

package info (click to toggle)
r-cran-hardhat 1.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,656 kB
  • sloc: sh: 13; makefile: 2
file content (1035 lines) | stat: -rw-r--r-- 32,406 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
#' Default formula blueprint
#'
#' This pages holds the details for the formula preprocessing blueprint. This
#' is the blueprint used by default from `mold()` if `x` is a formula.
#'
#' @inheritParams new_formula_blueprint
#'
#' @param formula A formula specifying the predictors and the outcomes.
#'
#' @param data A data frame or matrix containing the outcomes and predictors.
#'
#' @param blueprint A preprocessing `blueprint`. If left as `NULL`, then a
#' [default_formula_blueprint()] is used.
#'
#' @param ... Not used.
#'
#' @return
#'
#' For `default_formula_blueprint()`, a formula blueprint.
#'
#' @details
#'
#' While not different from base R, the behavior of expanding factors into
#' dummy variables when `indicators = "traditional"` and an intercept is _not_
#' present is not always intuitive and should be documented.
#'
#' - When an intercept is present, factors are expanded into `K-1` new columns,
#' where `K` is the number of levels in the factor.
#'
#' - When an intercept is _not_ present, the first factor is expanded into
#' all `K` columns (one-hot encoding), and the remaining factors are expanded
#' into `K-1` columns. This behavior ensures that meaningful predictions can
#' be made for the reference level of the first factor, but is not the exact
#' "no intercept" model that was requested. Without this behavior, predictions
#' for the reference level of the first factor would always be forced to `0`
#' when there is no intercept.
#'
#' Offsets can be included in the formula method through the use of the inline
#' function [stats::offset()]. These are returned as a tibble with 1 column
#' named `".offset"` in the `$extras$offset` slot of the return value.
#'
#' @section Mold:
#'
#' When `mold()` is used with the default formula blueprint:
#'
#' - Predictors
#'
#'    - The RHS of the `formula` is isolated, and converted to its own
#'    1 sided formula: `~ RHS`.
#'
#'    - Runs [stats::model.frame()] on the RHS formula and uses `data`.
#'
#'    - If `indicators = "traditional"`, it then runs [stats::model.matrix()]
#'    on the result.
#'
#'    - If `indicators = "none"`, factors are removed before `model.matrix()`
#'    is run, and then added back afterwards. No interactions or inline
#'    functions involving factors are allowed.
#'
#'    - If `indicators = "one_hot"`, it then runs [stats::model.matrix()] on the
#'    result using a contrast function that creates indicator columns for all
#'    levels of all factors.
#'
#'    - If any offsets are present from using `offset()`, then they are
#'    extracted with [model_offset()].
#'
#'    - If `intercept = TRUE`, adds an intercept column.
#'
#'    - Coerces the result of the above steps to a tibble.
#'
#' - Outcomes
#'
#'    - The LHS of the `formula` is isolated, and converted to its own
#'    1 sided formula: `~ LHS`.
#'
#'    - Runs [stats::model.frame()] on the LHS formula and uses `data`.
#'
#'    - Coerces the result of the above steps to a tibble.
#'
#' @section Forge:
#'
#' When `forge()` is used with the default formula blueprint:
#'
#' - It calls [shrink()] to trim `new_data` to only the required columns and
#' coerce `new_data` to a tibble.
#'
#' - It calls [scream()] to perform validation on the structure of the columns
#' of `new_data`.
#'
#' - Predictors
#'
#'    - It runs [stats::model.frame()] on `new_data` using the stored terms
#'    object corresponding to the _predictors_.
#'
#'    - If, in the original [mold()] call, `indicators = "traditional"` was
#'    set, it then runs [stats::model.matrix()] on the result.
#'
#'    - If, in the original [mold()] call, `indicators = "none"` was set, it
#'    runs [stats::model.matrix()] on the result without the factor columns,
#'    and then adds them on afterwards.
#'
#'    - If, in the original [mold()] call, `indicators = "one_hot"` was set, it
#'    runs [stats::model.matrix()] on the result with a contrast function that
#'    includes indicators for all levels of all factor columns.
#'
#'    - If any offsets are present from using `offset()` in the original call
#'    to [mold()], then they are extracted with [model_offset()].
#'
#'    - If `intercept = TRUE` in the original call to [mold()], then an
#'    intercept column is added.
#'
#'    - It coerces the result of the above steps to a tibble.
#'
#'  - Outcomes
#'
#'    - It runs [stats::model.frame()] on `new_data` using the
#'    stored terms object corresponding to the _outcomes_.
#'
#'    - Coerces the result to a tibble.
#'
#' @section Differences From Base R:
#'
#' There are a number of differences from base R regarding how formulas are
#' processed by `mold()` that require some explanation.
#'
#' Multivariate outcomes can be specified on the LHS using syntax that is
#' similar to the RHS (i.e. `outcome_1 + outcome_2 ~ predictors`).
#' If any complex calculations are done on the LHS and they return matrices
#' (like [stats::poly()]), then those matrices are flattened into multiple
#' columns of the tibble after the call to `model.frame()`. While this is
#' possible, it is not recommended, and if a large amount of preprocessing is
#' required on the outcomes, then you are better off
#' using a [recipes::recipe()].
#'
#' Global variables are _not_ allowed in the formula. An error will be thrown
#' if they are included. All terms in the formula should come from `data`. If
#' you need to use inline functions in the formula, the safest way to do so is
#' to prefix them with their package name, like `pkg::fn()`. This ensures that
#' the function will always be available at `mold()` (fit) and `forge()`
#' (prediction) time. That said, if the package is _attached_
#' (i.e. with `library()`), then you should be able to use the inline function
#' without the prefix.
#'
#' By default, intercepts are _not_ included in the predictor output from the
#' formula. To include an intercept, set
#' `blueprint = default_formula_blueprint(intercept = TRUE)`. The rationale
#' for this is that many packages either always require or never allow an
#' intercept (for example, the `earth` package), and they do a large amount of
#' extra work to keep the user from supplying one or removing it. This
#' interface standardizes all of that flexibility in one place.
#'
#' @examples
#' # ---------------------------------------------------------------------------
#'
#' data("hardhat-example-data")
#'
#' # ---------------------------------------------------------------------------
#' # Formula Example
#'
#' # Call mold() with the training data
#' processed <- mold(
#'   log(num_1) ~ num_2 + fac_1,
#'   example_train,
#'   blueprint = default_formula_blueprint(intercept = TRUE)
#' )
#'
#' # Then, call forge() with the blueprint and the test data
#' # to have it preprocess the test data in the same way
#' forge(example_test, processed$blueprint)
#'
#' # Use `outcomes = TRUE` to also extract the preprocessed outcome
#' forge(example_test, processed$blueprint, outcomes = TRUE)
#'
#' # ---------------------------------------------------------------------------
#' # Factors without an intercept
#'
#' # No intercept is added by default
#' processed <- mold(num_1 ~ fac_1 + fac_2, example_train)
#'
#' # So, for factor columns, the first factor is completely expanded into all
#' # `K` columns (the number of levels), and the subsequent factors are expanded
#' # into `K - 1` columns.
#' processed$predictors
#'
#' # In the above example, `fac_1` is expanded into all three columns,
#' # `fac_2` is not. This behavior comes from `model.matrix()`, and is somewhat
#' # known in the R community, but can lead to a model that is difficult to
#' # interpret since the corresponding p-values are testing wildly different
#' # hypotheses.
#'
#' # To get all indicators for all columns (irrespective of the intercept),
#' # use the `indicators = "one_hot"` option
#' processed <- mold(
#'   num_1 ~ fac_1 + fac_2,
#'   example_train,
#'   blueprint = default_formula_blueprint(indicators = "one_hot")
#' )
#'
#' processed$predictors
#'
#' # It is not possible to construct a no-intercept model that expands all
#' # factors into `K - 1` columns using the formula method. If required, a
#' # recipe could be used to construct this model.
#'
#' # ---------------------------------------------------------------------------
#' # Global variables
#'
#' y <- rep(1, times = nrow(example_train))
#'
#' # In base R, global variables are allowed in a model formula
#' frame <- model.frame(fac_1 ~ y + num_2, example_train)
#' head(frame)
#'
#' # mold() does not allow them, and throws an error
#' try(mold(fac_1 ~ y + num_2, example_train))
#'
#' # ---------------------------------------------------------------------------
#' # Dummy variables and interactions
#'
#' # By default, factor columns are expanded
#' # and interactions are created, both by
#' # calling `model.matrix()`. Some models (like
#' # tree based models) can take factors directly
#' # but still might want to use the formula method.
#' # In those cases, set `indicators = "none"` to not
#' # run `model.matrix()` on factor columns. Interactions
#' # are still allowed and are run on numeric columns.
#'
#' bp_no_indicators <- default_formula_blueprint(indicators = "none")
#'
#' processed <- mold(
#'   ~ fac_1 + num_1:num_2,
#'   example_train,
#'   blueprint = bp_no_indicators
#' )
#'
#' processed$predictors
#'
#' # An informative error is thrown when `indicators = "none"` and
#' # factors are present in interaction terms or in inline functions
#' try(mold(num_1 ~ num_2:fac_1, example_train, blueprint = bp_no_indicators))
#' try(mold(num_1 ~ paste0(fac_1), example_train, blueprint = bp_no_indicators))
#'
#' # ---------------------------------------------------------------------------
#' # Multivariate outcomes
#'
#' # Multivariate formulas can be specified easily
#' processed <- mold(num_1 + log(num_2) ~ fac_1, example_train)
#' processed$outcomes
#'
#' # Inline functions on the LHS are run, but any matrix
#' # output is flattened (like what happens in `model.matrix()`)
#' # (essentially this means you don't wind up with columns
#' # in the tibble that are matrices)
#' processed <- mold(poly(num_2, degree = 2) ~ fac_1, example_train)
#' processed$outcomes
#'
#' # TRUE
#' ncol(processed$outcomes) == 2
#'
#' # Multivariate formulas specified in mold()
#' # carry over into forge()
#' forge(example_test, processed$blueprint, outcomes = TRUE)
#'
#' # ---------------------------------------------------------------------------
#' # Offsets
#'
#' # Offsets are handled specially in base R, so they deserve special
#' # treatment here as well. You can add offsets using the inline function
#' # `offset()`
#' processed <- mold(num_1 ~ offset(num_2) + fac_1, example_train)
#'
#' processed$extras$offset
#'
#' # Multiple offsets can be included, and they get added together
#' processed <- mold(
#'   num_1 ~ offset(num_2) + offset(num_3),
#'   example_train
#' )
#'
#' identical(
#'   processed$extras$offset$.offset,
#'   example_train$num_2 + example_train$num_3
#' )
#'
#' # Forging test data will also require
#' # and include the offset
#' forge(example_test, processed$blueprint)
#'
#' # ---------------------------------------------------------------------------
#' # Intercept only
#'
#' # Because `1` and `0` are intercept modifying terms, they are
#' # not allowed in the formula and are instead controlled by the
#' # `intercept` argument of the blueprint. To use an intercept
#' # only formula, you should supply `NULL` on the RHS of the formula.
#' mold(
#'   ~NULL,
#'   example_train,
#'   blueprint = default_formula_blueprint(intercept = TRUE)
#' )
#'
#' # ---------------------------------------------------------------------------
#' # Matrix output for predictors
#'
#' # You can change the `composition` of the predictor data set
#' bp <- default_formula_blueprint(composition = "dgCMatrix")
#' processed <- mold(log(num_1) ~ num_2 + fac_1, example_train, blueprint = bp)
#' class(processed$predictors)
#' @export
default_formula_blueprint <- function(intercept = FALSE,
                                      allow_novel_levels = FALSE,
                                      indicators = "traditional",
                                      composition = "tibble") {
  new_default_formula_blueprint(
    intercept = intercept,
    allow_novel_levels = allow_novel_levels,
    indicators = indicators,
    composition = composition
  )
}

#' @param terms A named list of two elements, `predictors` and `outcomes`. Both
#' elements are `terms` objects that describe the terms for the outcomes and
#' predictors separately. This argument is set automatically at [mold()] time.
#'
#' @rdname new-default-blueprint
#' @export
new_default_formula_blueprint <- function(intercept = FALSE,
                                          allow_novel_levels = FALSE,
                                          ptypes = NULL,
                                          formula = NULL,
                                          indicators = "traditional",
                                          composition = "tibble",
                                          terms = list(
                                            predictors = NULL,
                                            outcomes = NULL
                                          ),
                                          ...,
                                          subclass = character()) {
  validate_is_terms_list_or_null(terms)

  new_formula_blueprint(
    intercept = intercept,
    allow_novel_levels = allow_novel_levels,
    ptypes = ptypes,
    formula = formula,
    indicators = indicators,
    composition = composition,
    terms = terms,
    ...,
    subclass = c(subclass, "default_formula_blueprint")
  )
}

#' @export
refresh_blueprint.default_formula_blueprint <- function(blueprint) {
  do.call(new_default_formula_blueprint, as.list(blueprint))
}

# ------------------------------------------------------------------------------

#' @param data A data frame or matrix containing the outcomes and predictors.
#'
#' @rdname run-mold
#' @export
run_mold.default_formula_blueprint <- function(blueprint, ..., data) {
  check_dots_empty0(...)

  cleaned <- mold_formula_default_clean(blueprint = blueprint, data = data)

  blueprint <- cleaned$blueprint
  data <- cleaned$data

  mold_formula_default_process(blueprint = blueprint, data = data)
}

# ------------------------------------------------------------------------------
# mold - formula - clean

mold_formula_default_clean <- function(blueprint, data) {
  data <- check_is_data_like(data)

  # validate here, not in the constructor, because we
  # put a non-intercept-containing formula back in
  validate_formula_has_intercept(blueprint$formula)

  formula <- remove_formula_intercept(blueprint$formula, blueprint$intercept)
  formula <- alter_formula_environment(formula)

  blueprint <- update_blueprint(blueprint, formula = formula)

  new_mold_clean(blueprint, data)
}

# ------------------------------------------------------------------------------
# mold - formula - process

mold_formula_default_process <- function(blueprint, data) {
  processed <- mold_formula_default_process_predictors(
    blueprint = blueprint,
    data = data
  )

  blueprint <- processed$blueprint
  predictors <- processed$data
  predictors_ptype <- processed$ptype
  predictors_extras <- processed$extras

  processed <- mold_formula_default_process_outcomes(
    blueprint = blueprint,
    data = data
  )

  blueprint <- processed$blueprint
  outcomes <- processed$data
  outcomes_ptype <- processed$ptype
  outcomes_extras <- processed$extras

  # nuke formula environment before returning
  formula_empty_env <- nuke_formula_environment(blueprint$formula)
  blueprint <- update_blueprint(blueprint, formula = formula_empty_env)

  ptypes <- new_ptypes(predictors_ptype, outcomes_ptype)
  extras <- new_extras(predictors_extras, outcomes_extras)

  blueprint <- update_blueprint(blueprint, ptypes = ptypes)

  new_mold_process(predictors, outcomes, blueprint, extras)
}

mold_formula_default_process_predictors <- function(blueprint, data) {
  formula <- expand_formula_dot_notation(blueprint$formula, data)
  formula <- get_predictors_formula(formula)

  original_names <- get_all_predictors(formula, data)
  original_data <- data[, original_names, drop = FALSE]

  ptype <- extract_ptype(original_data)

  if (identical(blueprint$indicators, "none")) {
    factorish_names <- extract_original_factorish_names(ptype)
    validate_no_factorish_in_functions(formula, factorish_names)
    validate_no_factorish_in_interactions(formula, factorish_names)
    formula <- remove_factorish_from_formula(formula, factorish_names)
  }

  framed <- model_frame(formula, data)
  offset <- extract_offset(framed$terms, framed$data)

  if (identical(blueprint$indicators, "one_hot")) {
    predictors <- model_matrix_one_hot(
      terms = framed$terms,
      data = framed$data
    )
  } else {
    predictors <- model_matrix(
      terms = framed$terms,
      data = framed$data
    )
  }

  if (identical(blueprint$indicators, "none")) {
    predictors <- reattach_factorish_columns(predictors, data, factorish_names)
  }

  terms <- simplify_terms(framed$terms)

  predictors <- recompose(predictors, blueprint$composition)

  blueprint_terms <- blueprint$terms
  blueprint_terms$predictors <- terms
  blueprint <- update_blueprint(blueprint, terms = blueprint_terms)

  new_mold_process_terms(
    blueprint = blueprint,
    data = predictors,
    ptype = ptype,
    extras = list(offset = offset)
  )
}

mold_formula_default_process_outcomes <- function(blueprint, data) {
  formula <- blueprint$formula

  original_names <- get_all_outcomes(formula, data)
  original_data <- data[, original_names, drop = FALSE]

  ptype <- extract_ptype(original_data)

  formula <- get_outcomes_formula(formula)

  # used on the `~ LHS` formula
  validate_no_interactions(formula)

  framed <- model_frame(formula, data)

  outcomes <- flatten_embedded_columns(framed$data)

  terms <- simplify_terms(framed$terms)

  blueprint_terms <- blueprint$terms
  blueprint_terms$outcomes <- terms
  blueprint <- update_blueprint(blueprint, terms = blueprint_terms)

  new_mold_process_terms(
    blueprint = blueprint,
    data = outcomes,
    ptype = ptype
  )
}

# ------------------------------------------------------------------------------

#' @rdname run-forge
#' @export
run_forge.default_formula_blueprint <- function(blueprint,
                                                new_data,
                                                ...,
                                                outcomes = FALSE) {
  check_dots_empty0(...)

  cleaned <- forge_formula_default_clean(
    blueprint = blueprint,
    new_data = new_data,
    outcomes = outcomes
  )

  blueprint <- cleaned$blueprint
  predictors <- cleaned$predictors
  outcomes <- cleaned$outcomes
  extras <- cleaned$extras

  forge_formula_default_process(
    blueprint = blueprint,
    predictors = predictors,
    outcomes = outcomes,
    extras = extras
  )
}

# ------------------------------------------------------------------------------

forge_formula_default_clean <- function(blueprint, new_data, outcomes) {
  validate_is_new_data_like(new_data)
  validate_has_unique_column_names(new_data, "new_data")
  validate_is_bool(outcomes)

  predictors <- shrink(new_data, blueprint$ptypes$predictors)

  predictors <- scream(
    predictors,
    blueprint$ptypes$predictors,
    allow_novel_levels = blueprint$allow_novel_levels
  )

  if (outcomes) {
    outcomes <- shrink(new_data, blueprint$ptypes$outcomes)
    # Never allow novel levels for outcomes
    outcomes <- scream(outcomes, blueprint$ptypes$outcomes)
  } else {
    outcomes <- NULL
  }

  new_forge_clean(blueprint, predictors, outcomes)
}

# ------------------------------------------------------------------------------

forge_formula_default_process <- function(blueprint, predictors, outcomes, extras) {
  processed <- forge_formula_default_process_predictors(
    blueprint = blueprint,
    predictors = predictors
  )

  blueprint <- processed$blueprint
  predictors <- processed$data
  predictors_extras <- processed$extras

  processed <- forge_formula_default_process_outcomes(
    blueprint = blueprint,
    outcomes = outcomes
  )

  blueprint <- processed$blueprint
  outcomes <- processed$data
  outcomes_extras <- processed$extras

  extras <- c(
    extras,
    new_extras(predictors_extras, outcomes_extras)
  )

  new_forge_process(predictors, outcomes, extras)
}

forge_formula_default_process_predictors <- function(blueprint, predictors) {
  terms <- blueprint$terms$predictors
  terms <- alter_terms_environment(terms)

  framed <- model_frame(terms, predictors)

  if (identical(blueprint$indicators, "one_hot")) {
    data <- model_matrix_one_hot(
      terms = framed$terms,
      data = framed$data
    )
  } else {
    data <- model_matrix(
      terms = framed$terms,
      data = framed$data
    )
  }

  if (identical(blueprint$indicators, "none")) {
    factorish_names <- extract_original_factorish_names(blueprint$ptypes$predictors)
    data <- reattach_factorish_columns(data, predictors, factorish_names)
  }

  data <- recompose(data, blueprint$composition)

  offset <- extract_offset(framed$terms, framed$data)

  extras <- list(offset = offset)

  new_forge_process_terms(
    blueprint = blueprint,
    data = data,
    extras = extras
  )
}

forge_formula_default_process_outcomes <- function(blueprint, outcomes) {

  # no outcomes to process
  if (is.null(outcomes)) {
    result <- new_forge_process_terms(
      blueprint = blueprint,
      data = outcomes
    )
    return(result)
  }

  terms <- blueprint$terms$outcomes
  terms <- alter_terms_environment(terms)

  framed <- model_frame(terms, outcomes)

  # Because model.matrix() does this for the RHS and we want
  # to be consistent even though we are only going through
  # model.frame()
  data <- flatten_embedded_columns(framed$data)

  new_forge_process_terms(
    blueprint = blueprint,
    data = data
  )
}

# ------------------------------------------------------------------------------

# Is this a bad idea? We need it to forge() terms where
# an inline function may have been used like poly(), but there
# is no gurantee that the env above the global env is the same
# as the one that was used in mold()
alter_terms_environment <- function(terms_blueprint) {
  env_above_global_env <- env_parent(global_env())
  attr(terms_blueprint, ".Environment") <- env_above_global_env
  terms_blueprint
}

# ------------------------------------------------------------------------------

expand_formula_dot_notation <- function(formula, data) {

  # Calling terms() on the formula, and providing
  # data will go ahead and expand the formula
  # if any `.` was present
  .terms <- terms(formula, data = data)

  new_formula(
    lhs = f_lhs(.terms),
    rhs = f_rhs(.terms),
    env = f_env(.terms)
  )
}

nuke_formula_environment <- function(formula) {
  new_formula(
    lhs = f_lhs(formula),
    rhs = f_rhs(formula),
    env = empty_env()
  )
}

validate_is_terms_list_or_null <- function(terms) {
  validate_is(terms, is_list, "list")

  validate_has_name(terms, "terms", "predictors")
  validate_has_name(terms, "terms", "outcomes")

  if (!is.null(terms$predictors)) {
    validate_is_terms(terms$predictors, glue("terms$predictors"))
  }

  if (!is.null(terms$outcomes)) {
    validate_is_terms(terms$outcomes, glue("terms$outcomes"))
  }

  invisible(terms)
}

alter_formula_environment <- function(formula) {

  # formula environment is 1 step above global env to avoid
  # global variables but maintain ability to use pkg functions
  # (like stats::poly())
  env_above_global_env <- env_parent(global_env())

  new_formula(
    lhs = f_lhs(formula),
    rhs = f_rhs(formula),
    env = env_above_global_env
  )
}

# We do this extra flattening because it happens on the RHS
# automatically because of the model.matrix() call. So this
# makes the column types consistent when doing something
# complex on the LHS like poly(, degree = 2) that returns
# a matrix
flatten_embedded_columns <- function(data) {
  has_embedded_2D <- vapply(
    X = data,
    FUN = function(col) dims(col) > 1,
    FUN.VALUE = logical(1)
  )

  has_any_embedded_2D <- any(has_embedded_2D)

  if (has_any_embedded_2D) {

    # Inspired by
    # https://stackoverflow.com/questions/43281803/embedded-data-frame-in-r-what-is-it-what-is-it-called-why-does-it-behave-th
    # This could probably be better?
    # It doesn't work with tibble(!!!x)
    frame_flattener <- expr(
      data.frame(
        !!!data,
        check.names = FALSE,
        stringsAsFactors = FALSE
      )
    )

    data <- eval_bare(frame_flattener)
  }

  tibble::as_tibble(data)
}

validate_no_factorish_in_functions <- function(.formula, .factorish_names) {
  .terms <- terms(.formula)

  bad_original_cols <- detect_factorish_in_functions(.terms, .factorish_names)

  ok <- length(bad_original_cols) == 0L

  if (!ok) {
    bad_original_cols <- glue_quote_collapse(bad_original_cols)

    glubort(
      "Functions involving factors or characters have been detected on the ",
      "RHS of `formula`. These are not allowed when `indicators = \"none\"`. ",
      "Functions involving factors were detected for the following columns: ",
      "{bad_original_cols}."
    )
  }

  invisible(.formula)
}

# Returns original column names of any factor columns that
# are present in an inline function
# The row.names() of the factors matrix contains all of the
# non-interaction expressions that are used in the formula
detect_factorish_in_functions <- function(.terms, .factorish_names) {
  terms_matrix <- attr(.terms, "factors")

  only_intercept_or_offsets <- length(terms_matrix) == 0L
  if (only_intercept_or_offsets) {
    return(character(0))
  }

  all_terms_chrs <- row.names(terms_matrix)

  # Remove bare factor / character names
  candidate_chrs <- all_terms_chrs[!(all_terms_chrs %in% .factorish_names)]

  if (length(candidate_chrs) == 0L) {
    return(character(0))
  }

  candidate_exprs <- parse_exprs(candidate_chrs)

  # Look for each factorish name in the list of candidate expressions
  factorish_name_is_in_a_fn <- map_lgl(
    .factorish_names,
    function(factorish_name) {
      has_name <- map_lgl(
        candidate_exprs,
        expr_contains,
        what = as.name(factorish_name),
        include_function_names = FALSE
      )
      any(has_name)
    }
  )

  bad_cols <- .factorish_names[factorish_name_is_in_a_fn]

  bad_cols
}

validate_no_factorish_in_interactions <- function(.formula, .factorish_names) {

  # Call terms on a standard formula to generate the terms interaction matrix
  .terms <- terms(.formula)

  bad_original_cols <- detect_factorish_in_interactions(.terms, .factorish_names)

  ok <- length(bad_original_cols) == 0L

  if (!ok) {
    bad_original_cols <- glue_quote_collapse(bad_original_cols)

    glubort(
      "Interaction terms involving factors or characters have been detected on the ",
      "RHS of `formula`. These are not allowed when `indicators = \"none\"`. ",
      "Interactions involving factors were detected for the following columns: ",
      "{bad_original_cols}."
    )
  }

  invisible(.formula)
}

# Returns the _original_ column names
# of any factor / character columns that are present
# in any interaction terms (from : or * or %in% or ^)
detect_factorish_in_interactions <- function(.terms, .factorish_names) {
  terms_matrix <- attr(.terms, "factors")

  only_intercept_or_offsets <- length(terms_matrix) == 0L
  if (only_intercept_or_offsets) {
    return(character(0))
  }

  other_cols <- setdiff(colnames(terms_matrix), .factorish_names)

  no_other_cols <- length(other_cols) == 0L
  if (no_other_cols) {
    return(character(0))
  }

  # Something like Species, rather than paste0(Species)
  indicator_bare_factorish <- .factorish_names %in% row.names(terms_matrix)
  bare_factorish_names <- .factorish_names[indicator_bare_factorish]

  # Something like mold(~ paste0(Species), iris, indicators = "none")
  no_bare_factorish_used <- length(bare_factorish_names) == 0L
  if (no_bare_factorish_used) {
    return(character(0))
  }

  factorish_rows <- terms_matrix[bare_factorish_names, , drop = FALSE]
  factorish_rows <- factorish_rows[, other_cols, drop = FALSE]

  # In the factor matrix, only `:` is present to represent interactions,
  # even if something like * or ^ or %in% was used to generate it
  terms_names <- colnames(factorish_rows)
  terms_exprs <- parse_exprs(terms_names)
  has_interactions <- map_lgl(terms_exprs, expr_contains, what = as.name(":"))

  none_have_interactions <- !any(has_interactions)
  if (none_have_interactions) {
    return(character(0))
  }

  interaction_cols <- factorish_rows[, has_interactions, drop = FALSE]

  factorish_is_bad_if_gt_0 <- rowSums(interaction_cols)
  bad_factorish_vals <- factorish_is_bad_if_gt_0[factorish_is_bad_if_gt_0 > 0]

  bad_cols <- names(bad_factorish_vals)

  bad_cols
}

validate_no_interactions <- function(.formula) {
  bad_terms <- detect_interactions(.formula)

  no_interactions <- length(bad_terms) == 0L
  if (no_interactions) {
    return(invisible(.formula))
  }

  bad_terms <- glue_quote_collapse(bad_terms)

  glubort(
    "Interaction terms cannot be specified on the LHS of `formula`. ",
    "The following interaction terms were found: {bad_terms}."
  )
}

# Returns processed names of any interaction terms
# like 'Species:Sepal.Width', or character(0)
detect_interactions <- function(.formula) {
  .terms <- terms(.formula)

  terms_matrix <- attr(.terms, "factors")

  only_intercept_or_offsets <- length(terms_matrix) == 0L
  if (only_intercept_or_offsets) {
    return(character(0))
  }

  terms_names <- colnames(terms_matrix)

  # All interactions (*, ^, %in%) will be expanded to `:`
  terms_exprs <- parse_exprs(terms_names)
  has_interactions <- map_lgl(terms_exprs, expr_contains, what = as.name(":"))

  has_any_interactions <- any(has_interactions)

  if (!has_any_interactions) {
    return(character(0))
  }

  bad_terms <- terms_names[has_interactions]

  bad_terms
}

expr_contains <- function(expr, what, ..., include_function_names = TRUE) {
  if (!is_expression(expr)) {
    abort("`expr` must be an expression.")
  }
  if (!is_symbol(what)) {
    abort("`what` must be a symbol.")
  }

  expr_contains_recurse(expr, what, include_function_names)
}
expr_contains_recurse <- function(expr, what, include_function_names) {
  switch(typeof(expr),
    symbol = identical(expr, what),
    language = language_contains(expr, what, include_function_names),
    FALSE
  )
}
language_contains <- function(expr, what, include_function_names) {
  if (length(expr) == 0L) {
    abort("Internal error, `expr` should be at least length 1.")
  }

  if (!include_function_names) {
    # Drop function name to avoid matching that
    expr <- expr[-1L]
  }

  # Recurse into elements
  contains <- map_lgl(
    expr,
    expr_contains_recurse,
    what = what,
    include_function_names = include_function_names
  )

  any(contains)
}

extract_original_factorish_names <- function(ptype) {
  where_factorish <- vapply(ptype, is_factorish, logical(1))

  original_factorish_columns <- colnames(ptype)[where_factorish]

  original_factorish_columns
}

is_factorish <- function(x) {
  is.factor(x) || is.character(x)
}

remove_factorish_from_formula <- function(.formula, .factorish_names) {
  if (length(.factorish_names) == 0L) {
    return(.formula)
  }

  .factorish_syms <- syms(.factorish_names)

  .f_rhs <- f_rhs(.formula)

  for (.factorish_sym in .factorish_syms) {
    .f_rhs <- expr(!!.f_rhs - !!.factorish_sym)
  }

  new_formula(
    lhs = f_lhs(.formula),
    rhs = .f_rhs,
    env = f_env(.formula)
  )
}

reattach_factorish_columns <- function(predictors, data, factorish_names) {
  data_factorish_cols <- data[, factorish_names, drop = FALSE]
  tibble::add_column(predictors, !!!data_factorish_cols)
}

get_predictors_formula <- function(formula) {
  new_formula(
    lhs = NULL,
    rhs = f_rhs(formula),
    env = f_env(formula)
  )
}

get_outcomes_formula <- function(formula) {
  new_formula <- new_formula(
    lhs = NULL,
    rhs = f_lhs(formula),
    env = f_env(formula)
  )

  remove_formula_intercept(new_formula, intercept = FALSE)
}